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A phenomenological theory is given for coupled magnetoacoustic waves in ferromagnetic media 
and fer rites (the coupling between the elastic and magnetic waves is due to magnetostriction 
and spontaneous magnetization). The acoustic velocity in ferromagnetic media is determined 
and is found to be a function of the magnetization and longitudinal magnetic field. The acoustic 
absorption factor associated with the electrical conductivity and relaxation of the magnetiza­
tion is determined. The possibility of resonant ultrasonic excitation of magnetic waves is in­
dicated. 

l. As is well known, any deviation of the magnetiza­
tion from the equilibrium value (at a given temper­
ature) in ferromagnetic media and ferrites is prop­
agated in the form of waves, the dispersion proper­
ties of which are similar to those of spin waves. 1 

Because of magnetostriction and ponderomotive 
effects due to spontaneous magnetization, there is 
coupling in an elastically deformed ferromagnetic 
material between what we shall call "magnetic" 
waves and the elastic waves. In media of high 
conductivity, the coupled magnetoelastic waves 
produced in this way are similar to the magneto­
elastic waves that propagate in metals in an ex­
ternal magnetic field and to the magnetohydrody­
namic waves in liquid conductors. However, in 
contrast with magnetohydrodynamic waves, the 
magnetoelastic waves considered here can propa­
gate in both ferromagnetic media and ferrites and, 
in addition, do not require an external magnetic 
field. 

The coupling between magnetic and elastic 
waves offers the possibility of acoustic excitation 
of magnetic waves; moreover, the excitation should 
be especially intense in those cases in which the 
frequency and wave vector of the magnetic wave 
coincide with the frequency and wave vector of 
the elastic wave. 

The interaction between magnetic and elastic 
waves leads to a dependence of the acoustic ve­
locity in ferromagnetic media on the spontaneous 
magnetization and the external magnetic field. 
This interaction means additional acoustic absorp-
tion in ferromagnetic media; this absorption de­
pends on the electrical conductivity of the medium 
and the magnetization relaxation mechanism. It 
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is to be distinguished from another acoustic ab­
sorption mechanism, also characteristic of ferro­
magnetic media, in which the presence of an ex­
ternal acoustic field causes a deviation in the spin 
wave distribution function from the equilibrium 
value by virtue of the increased entropy .. 2 

In the present paper we present a phenomeno­
logical theory of coupled magnetoelastic. waves in 
ferromagnetic media and ferrites. Pure magnetic 
waves are considered first. 

2. The free energy in a ferromagnetic medium 
can be given in the form: 

:?f = - rx.ik-- + ~(M) J_ ---M·H dV. ~ { 1 oM oM h2 + e·d } 
2 OX QXR I t;r; 0 

(1) 

Here the first term represents the exchange energy 
associated with inhomogeneity of the magnetization 
M (the C¥ik are the exchange integrals*), the 
second term includes the exchange energy which 
depends on M and the anisotropy energy, while 
the third and fourth terms are the energy of the 
electromagnetic field and the energy of the mag­
netic moment in the external magnetic field H0 

( h and e are the magnetic and electric fields 
respectively, d is the induction associated with 
the changing magnetization). 

In the case of a uniaxial crystal the function 
,B ( M) can be given by 

~ (M) = ~1 (M2) + ~z (M·n I M), (2) 

*In order-of-magnitude the quantities CXik- ®ca2/1'1gM., 
where ®c is the Curie temperature, a is the lattice constant, 
and M0 is the saturation magnetization. 
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where n is a unit vector in the direction of easi­
est magnetization. 

The time derivative of the magnetization of the 
ferromagnetic medium is determined by the Landau­
Lifshitz equation3 

oM I at= g [MX H(e)J- /,M-2 [Mx [MxH(e)]], (3) 

where H(e) is the effective magnetic field, an ex­
pression for which is given below, A is the damp­
ing factor and g is the gyromagnetic ratio. 

We determine the time derivative of the energy 
in a volume V. Using Maxwell's equations we 
have: 

+} {-:"' [hxe]k + C<tk ~~ ~~-}dsk, 

where j is the density of the conduction current 
and S is the surface which encloses the volume V. 

If A= 0 and a= 0, from energy conservation 
considerations, the exchange integral must vanish. 
Whence, using Eq. (3) for oM/ot with A = 0, it is 
easy to obtain the following expression for the ef­
fective magnetic field: 

H(e) = Ho +h-op (M) I oi\1 + e<n,o2M I OXtOXk• (4) 

For finite values of A and a the time deriva­
tive of the energy is 

If c aM aM} + ~ l ~ [hxe]k + C<tk axi at dsk. 

where a is the electrical conductivity of the 
media. 

3. We now explain the dispersion properties 
of the magnetic waves. We use the symbol M0 

(5) 

to denote the equilibrium value of the magnetiza­
tion per unit volume of the ferromagnetic medium 
at a given temperature and J.' ( r, t) to express 
the deviation of the magnetization from the equi­
librium value at a point r and time t. 

The quantity M0 can be determined from the 
minimum energy condition which yields 

(6) 

Assuming that JJ. « M0, from Eqs. (2), (4) and 
(6) we obtain the following expression for the ef­
fective magnetic field in the case of a uniaxial 
crystal with H0 II. n: 

H(e) = h- H0 p. / M 0 - pp._1_- an (n •p.) + e<.:lp., 

where {3 is the anisotropy constant {3 = - /32 ( 1 )/ 
M~ and a= 4M~f3i ( M~ ). 

With A = 0 the complete system of linearized 
equations is 

aiL M l· lh Ho q , )j -ar = g o r'x\ .. - Mo p.-; p. + e<up. , 

1 h 1 ad , 4::. 
cur = -c-at -r c J, (7) 

1 a 
curl e =-cat (h + 4;-;p.). 

We seek a solution for this system in the form 
of plane waves e-i(wt -k · r). First we consider 
the case a= 0. Neglecting the displacement cur­
rent, the relation between w and k is of the form: 

where 

n = gM0 (e<k 2 + [3 + H0 ! Mo + 4"' sin2&), 
n1 = gMo(e<k2 + [3 + H0 / Mu) 

and J is the angle between k and M0• 

(8) 

(9) 

This relation is the same as the well known re­
lation between frequency and wave vector for Bloch 
spin waves. 4 It is valid when EW «a« c2k2/w. 

We now consider the magnetic and electromag­
netic waves in ferrites, taking the displacement 
current into account. Writing d = E ( w) e, where 
E ( w) is the dielectric constant, the following dis­
persion equation is obtained from Eq. (7): 

where 

4r.gMo. 
"= 4r.gM0 + 01 ' 

,2 T' ( ck )2 
<; = ·e- 4r.gM0 ' 

If ~ 2 » 1, Eq. (10) leads to the solution: 

2 _ c2k2 { 1 + 4r.gM0 "} (1)- -€- _-"'-COSv-, 

(10) 

(11) 

The first of these equations determines the fre­
quency of the electromagnetic waves which propa­
gate in a medium of anisotropic magnetic suscep­
tibility with the following values for the two waves 
(right-handed and left-handed circular polariza­
tion): 

[Lt((l)) = 1-(4,-;gM0 1(1))cos&, 

[1.2 (cu) = 1 + (4-r:gM0 I (1)) cos&. 

The second solution coincides with (8). 
If ~ 2 « 1, Eq. (10) has the following roots: 

k ./1-'t" 
(l)=c v-€-. (1) = ck 1 /1 - T cos• ~ 

,. € ' 

(12) 

(13) 
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If the conductivity of the medium is high, 
(a» EW, a» c2k2/w) the frequency of the mag­
netic waves is 

(14) 

4. We now determine the damping of the mag­
netic waves due to the finite conductivity and re­
laxation processes. 

If the absorption is small, the damping factor 
can be defined as 

r = - ( 1 I ;J't) d;J't I dt, (15) 

where the bar denotes time averages of expres­
sions defined in Eqs. (1) and (5); in place of the 
fields e and h we substitute their values for 
a= 0, A = 0 or a= oo and A = 0. 

If EW «a« c2k2/w,.., c2ti2/®ca2, it can be 
shown that: 

If a » 47rgM0 and a » c2k2 I 47rgM0 

f=J._(ck) 2 0 :~0 M (1 +sin2 .&)+2+(D1 +4>-gM0). 
cr 1 1tg o gMo 

(17) 

5. It can be easily shown that the absorption of 
the magnetic waves is small ( r « w ) if 

A <If; gM0 , cr ~ c2k2 I gM0 • 

These inequalities are obviously the existence 
conditions for Bloch spin waves. 

It follows from the second condition that 

k '3>k0 , 

where 

(18) 

l is the electron free path length and o0 is the 
depth of the skin layer corresponding to the fre­
quency w = gM0 ( o~ = c2/21TgM0a0, a0 is the static 
conductivity; when l » o0 the expression for k0 

corresponds to the anomalous skin effect ) . 
Thus, there are no spin waves for wavelengths 

large compared with Ao = 1/ko. 
If k « k0, the magnetic wave spectrum is de­

termined by Eq. (14). In this case the frequency 
is a weak function of wave vector. 

The dependence of spin-wave frequency on wave 
vector, as is well known, is associated with the de­
pendence of the magaetization and other thermody­
namic quantities on temperature. A Bloch law 

( Ta/2 ) for the magnetization corresponds to the 
spectrum w = ®c ( ak )2 /ti which is obtained if we 
neglect the terms {3 + H0 /M0 and 41T sin2 J in 
Eq. (9), i.e., if the magnetic interaction and aniso­
tropy are neglected. It can be shown that frequen­
cies w = ®c ( ak )2 /ti are excited· at temperatures 
much higher than 47rgM0ti (,.., 1 °K). 

At temperatures T ::s 47rgM0ti the magnetic in­
teraction plays an important role in the spectrum 
and the frequency is determined by Eq. (8). In• 
this case we have a T2 relation for the magneti­
zation instead of the T312 relation. 5 Equation (8) 
applies only when k » k0• Whence it may be con­
cluded that the spectrum w ,.., k sin J is excited 
at temperatures which satisfy the condition 

gB 01i (a2cr8c/tLc2Y1• < T < gB0ti. 

In the temperature region T « gB0ti ( a 2a®c /tic2 ) 1/2, 

in place of the spectrum given in (8) we must use 
that given in (14) which yields an exponential de­
pendence for deviations of the magnetization from 
the saturation value. 

6. We now investigate coupled magnetoacoustic 
waves in ferromagnetic media. 

The equation of motion for the magnetization. 
and the elasticity equation are: 

pii = t, 

where u is the elastic displacement, H(e) is the 
effective magnetic field and f is the force which 
acts on a unit volume of the medium (expressions 
for these are given below). 

The energy in the ferromagnetic medium can be 
given in the form: 

(20) 

1 . 1 l + 2 pU2 + 2 Aik!mUikU!m + F zrn (M) Uzmr dV. 

This expression differs from that given in (1) in 
the presence of the three last terms; the first two 
represent elastic energy and the third the magneto­
striction energy ( Aiklm is the elasticity tensor). 

Using Maxwell's equations and (19), and assum­
ing that the current density is 

j = cr{e++[uxBJ}. B = H +4r.M, 

it is easy to show that 
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where 
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Thus, for finite values of A and CT the time deriv­
ative of the energy is given by 

d~ \ j 2 \ 'A 2 Tt = - j a dV - j M2 [Mxu<•>] dV 
v 

7. We consider first coupled magnetoacoustic 
waves with A= 0. 

a;k = AtktmUtm + F;k(M), G = UtmOFcm(M)joM. (21) 

For simplicity it will be assumed that the me­
dium is isotropic in both its elastic and magneto­
strictive properties. The last condition means 
that F ik ( M ) is of the form 

When CT = A = 0 the volume integFal vanishes. 
Whence it is easy to show that the effective mag­
netic field a(e) and the volume force f are. 

F;~~.(M) = o;11.M 2FI(M2 ) + M;M~~.F2 (M2), (23) 

where F 1 and F2 are certain functions of M2• 

Assuming that at equilibrium Uik = 0, from 

(22) 

the minimum energy condition it is easy to show 
that Fik ( M0 ) = 0. 

Linearizing Eq. (22) and assuming for simplicity that F 1 and F2 are constant, we obtain the follow­
ing expressions for a(e) and f: 

H<•> = h- ~!!. .L- p. ~~-an (!1 t1)+oc.<1p.-o1M0 div u- ~ o2M 0 ((nv')-u+ V (n·u)), 

f; = pc7.<1u; + p(c7 -c7) _aa divu + ~ [jxB0 ]; + Moaa_H(e) + o1-aa_(Mo·p.) + 1>22 (Mo;div p. + Mok aal'-;J, 
X; C X; X; Xk, 

where 61 and 62 are the magnetostriction constants 

o1 = 2F1 and o2 = 2F2 • 

The linearized equations of motion for the magnetization and elasticity are of the form: 
afL . . (e) 
at+ModlVU=gM0 [nxH ], 

ii = c7.<1u + (c7- c;) V div u + ~ V (M0 p.) + -21> 2 (Mo div 11 + (M0 V)·p.) + ~ [jxB0 ] + __1__ VM0 ·H(e) 
P P cp P ' 

(24) 

where B0 = H0 + 47rM0, cz and Ct are the velo.cities of the longitudinal and transverse acoustic oscilla­
tions. Assuming that all quantities vary as e-l(wt -k • r) and that CT = 0, we obtain the following dis­
persion relation 

(25) 
where 

( M )2 
fz = gk." (c7-cVcos2.&cos22.&. 

From this equation it is easy to obtain the velocities for the longitudinal (vt) and transverse (v2, v3 ) 

acoustic waves: 

(26) 
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These formulas apply if w2 is not close to UU1. 
If w2 is approximately the same as UU 1 the magnetic and acoustic branches of the oscillations 

"cross"; this effect is now considered for J. = rr/2 and J. = 0.6 

If J. = rr/2, the roots of the dispersion equation are: 
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(27) 

The first two roots determine the phase velocities of the longitudinal and one of the transverse acoustic 
waves. When kct <-./ UU 1 the third root determines the phase velocity of the magnetic wave while the 
fourth determines that of the other transverse wave. When kct >-.1 uu1 ' on the other hand, the fourth 
root determines the phase velocity of the magnetic wave while the third determines the phase velocity 
of the acoustic wave. 

If J. = 0, the roots of the dispersion equation are: 

Cz 

1 l; gM0 

Ct - 2 c; kc1 + 01 

1 ( + 0 1 1 l; gM0 J + 1 [( 0 1 )' + ~ gM0 3kct+Ot]'1• 
2 Ct T - 2 c; kct + nv 2 Ct - "71 7W; kct + nl 

V= 
(28) 

1 ( 0 1 1 l; gM0 ) 1 [r 0 1 )' gM0 3kct +Ot] 'I• 
2\ct+-T-2G;kc1+0t -2 \Ct-·T +~-rc; kc1+01 · 

When kct < Ul> the third root determines the phase velocity of the magnetic wave while the fourth de­
termines that of the transverse acoustic wave; if, however, kct > U1 the third root determines the phase 
velocity of the transverse acoustic wave while the fourth determines that of the magnetic wave. 

Equations (27) and (28) apply if 

It can be shown that the transverse waves are elliptically polarized and are of the following form: 

U= u{(k;-- k~ 1 )cos(wt-k•r)- 102xk]sin(wt-k•r)}; 
k.L kll k.LYJ 

gM~ , U cos ll fk .L . [nxk1 } p. = ~o2 n \"2 sm (wt -- k•r) + -2 - cos 2-&cos(wt- k·r) , 
t YJ- ___!.cos 2ll k .L k .L YJ 

"' 
(29) 

where U is a constant, 
_ n1 {I + 2 cos2{t w 2 -- nn1 \ 

"ff- (;) --2- n 0 2 2 , cos 2& 
nl cos22& +- cos2ll + [(ros22ll- _ cos2ll) +4 ~ cos2lJ cos22&] 1•j n1 n1 n; (30) 

and ku and k -L are the longitudinal and transverse components of k (with respect to M0 ). The ratio 
of the semi-axes of the ellipse is 

bja = cos &/YJ 
(29') 

( the semi -axis a lies in the ( n, k) plane and is perpendicular to k). 
When 0 = 0 we obtain two cylindrically polarized waves; with () = rr/2 we have two linearally polar­

ized waves for which the vector u has components along M 0 and M0 x k. 
8. We can analyze coupled magnetoacoustic oscillations in the high-conductivity case a» wc2/cf in 

similar fashion. 
Here we present only the formulas for the phase velocities of the acoustic waves for J. = 0 and J. = 

rr/2. If J. = 0, 
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When J = rr/2 
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V1=cz[l- M~ (2o1 +2q2-a-4::-Ho\)]• 
2pc~ \ 1 Mo 

{ M2 r B2 ) _ _ _o _o ___ 1_ gl\'10 ? _ B0 ~ 
V2- Va- Ct 1 + 2 o 4 n + 4 M ( J2 2 -M--)]1 o 

2pc1 4rrM0 ° 1 r.g o ' o. 

(31) 

(31') 

Taking Mo = 0 and 61 = 62 = 0 in these expressions we obtain the velocity of acoustic waves in a 
high conductivity metal located in an external magnetic field H0• If HV8rrpc~ « 1 these expressions 
assume the following form: for J = 0 

for J = rr/2 

(32) 

(32') 

9. In the previous formulas we have neglected terms containing A. and a. Taking these terms into 
account leads, firstly, to damping and, secondly, to an additional variation in phase velocity. We con­
sider the second problem, having in mind a number of effects for which the condition (A./ gM0 )2 » 
o~ ( M3 I 4pci) M0 ( H0 + {3M0 ) -l is satisfied. It can be shown that if this condition is satisfied the disper­
sion equation leads to the following expression for the phase velocity of the acoustic wave when J = 0 

(33) 

The relative change in the acoustic velocity [j.v/v for A./gM0 ...... 10-1 and {3 ...... 10-1 is approximately 
0.1%. 

10. We now consider th& absorption factor for magnetoacoustic oscillations. For this purpose, in 
accordance with Eq. (15), we compute the quantities :JC and d:JC/dt with values of the field correspond­
ing to A.= 0 and a= 0. Here we present only the final results. 

For small a the absorption factors for longitudinal r(l) and transverse r(t) waves are 

(34) 
M2 2 + 2 zn aB2 r<t) = f..w2 _o /)2 "l) cos " cos48 0 cos•{) 
4pc; 2 "1) 2 + cos28 [w"l)- 121 cos 28)2 + pc2 "1)2 + cos•{) 

X {[I _ 2rrM0 0 _ gM0 cos•~ ]' 2 + [t _ 2rrM0 0 gM0 cos 28 ]' cos2.&}. 
B0 2 "l)w - !11 cos 28 '1j B0 2 "l)w -- 111 cos 28 

It is apparent that the acoustic absorption is 
highly anisotropic and that the absorption is espe­
cially high at resonances at which the magnetic 
and acoustic frequencies coincide. 

To determine the acoustic absorption coeffi­
cient in the resonance region it is necessary to 
use the exact dispersion equation, which takes 
account of the conductivity a and the absorption 
factor A.. It can be shown that in this case the ab­
sorption factor is given by (30) and (34) if in the 
denominators of these expressions we replace 

1[ w2 - mll ]2 by [ w2 - m"ll ]2 + rmll where r is 
the damping factor for the magnetic wave as given 
by Eq. (16). 

The longitudinal absorption factor for acoustic 
waves at resonance when J = rr/2 is given by 

M2 2 r (l) ~ _o _(47t- a.)2 (<)0 2 - r\r\ 

~ 2 4 ' ' Wo - ~~ulo pcz 7t 1\ 

(35)o 

We compare the damping at resonance with the 
damping due to thermal conductivity. The latter 
is determined from the expression7 
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(36) 

where K is the thermal conductivity, T is the 
temperature in degrees, C is the heat capacity 
per unit volume and aT is the thermal expansion 
coefficient. 

The ratio r(l) I y is 

with 
!Xr = I o-s' c = I 06 , X ~ I 06 , T ~ I 02 °K, 

1-/gMo~I0-1 , o2~1, Cz~5·105 , Mo~I03 , 

this ratio becomes r(l) /y "' 102• 

(37) 

Finally, we present the formulas which deter­
mine the acoustic absorption in ferromagnetic 
media of high conductivity II» c2w/cl. When 
J=O 

when J = 1r/2 

r~1 > = o, ri1> = t-w2 (MU4rd) a:;n2, 

rU> = (w2/16 1t2cr) (c/cz)2 H~fpc1. 

(38') 

We see that the acoustic. absorption is non-resonant 
at high values of II. 

We compare this absorption factor (38) with that 
associated with thermal conductivity and internal 
viscosity. In metals the latter is determined from 
the expression:8 

(39) 

where Eo is the Fermi energy and v0 is the cor­
responding limiting electron velocity, n is the 
number of conduction electrons per unit volume 
and -r is the relaxation time. The ratio of the 
absorption factors (38) and (39) is 

i.~(gMo)•(__ci•[___!j_r,_ +..!._ Mo (o2 -2~\]2 • (40) 
Y cr c1 v01 4"ITM 0 2 B0 + [3M 0 Mo) 

With II"' 1017 and w < 107 both factors are of the 
same order of magnitude. 

11. In conclusion, we consider the problem of 
P.Xciting magnetic waves by means of an external 

" w2 c; 
ki =- . ) ' 

c; c;- ~ (Xxx- V XxyXyx 

If u I z=o = u0 is given, 

acoustic field. 
Suppose that the half-space z > 0 is filled with 

a ferromagnetic medium at the external surface of 
which (z = 0) is applied a displacement u = Uoe-iwt 
or a stress 1Ii3 = fie-iwt (u0 and f are assumed 
constant). It is required to determine u ( r, t) 
and u(r, t). 

Since we wish to consider low resonance fre­
quencies, the magnetization vector M0 -yvill be 
taken perpendicular to the boundary z = 0 ( to 
satisfy this condition we imagine a magnetization 
equal to M0 in the region z < 0 ) . 

It follows from Eq. (28) that when J = 0 the 
interaction of the transverse sound with magnetic 
waves is distinctive only in the resonance effect. 
Hence we will assume that u0 and f are in the 
( x, y) plane which contains the vector IJ.. 

In our case, the basic equations (24) can be 
written in the form: 

0 _ c2 82u _ M0ll2 811 = O 
t 8z2 2p az , 

~ = gM0 [nx(- g';;o !£ + h(s)~ +A (g~o !£- h(s)) = 0, 

where 

It follows from the second equation that 

fl. = zh(s)' 

where the tensor x is of the form: 

I. = ( A \2 

w~- w-iw0 gMJ 

. A w ( A )2 1-L---+-
( 

gMo "'o • gMo 

X . "' 
-L-

"'o 

Assuming that u and IJ. are proportional to 
e-iwt, we have 

w2u + (d- Cz) a2ujaz2 = 0, 

whence 

where c1 and c2 are integration constants and 
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( u0 is taken along the x axis) and 

U (z, t) = ~ Uo {ei (k,z-wt) + ei (h,z-wl)} j + ~ u0 {ei (k,z-wt) _ ei (h,z-o>t)} j, 

!£ (z, t) = - 1/z Mo~2;.cau;oz. 

Here 1 and j are unit vectors along the x and y axes. Whence: 

il,(>)2gM 2u { 9 . . 'A • } :1.1, (z, t) = 0 0 (w·- w2) cos (wt- kz) + 2ww - sm (wt- kz) 
·) ( , _ 2}2 .1_ 4 2 2 (' , M )'] o o gM • -Ct (>) (>)0 I (>) (>)0 "I g 0 0 

(41) 

u (z, t) = U0 cos (wt- kz) 

(here we have made use of the fact that k1 and k2 are approximately the same; thus k 1 = k2 = k = w/ Ct). 
The equations in (41) apply if: 

At resonance: 

Assuming A./gM0 "' 10-1, w0 "' 101, -and w0u0/ct"' 10-6 we find J.Lres/M0 "' 10-2• 

If the stress is given at the boundary, 

/)2(>) gM~f ((>) 2 - (>)~)sin ((>)t- kz)- 2(>)(>)0 ("A/gM0) cos ((>)t- kz) 
fL (z, t) = - o , 

Y 2pc; ((>) 2 - (>)~) 2 + 4(>) 2 (>)~ ("A/gM0 ) 2 

_f 
u (z, t) = --' sin (wt- kz). 

pwc t 

These formulas apply when A./ gM0 » ( {;/ ci) gM0 I w0• 
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