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We consider the system of equations for the radial functions describing the motion of alpha 
particles emitted in the a decay of nonspherical nuclei of arbitrary spin. We obtain equa­
tions which determine the boundary conditions for the radial functions on the nuclear surface, 
and formulas expressing the a -decay probability in terms of the values of the radial func­
tions at the nuclear surface and the shape of the nucleus. A simple approximate formula is 
found for the dependence of the a -decay probability on the angular momentum l carried 
off by the a particle and the energy of the level in the daughter nucleus. 

Various methods for approximate solution of the system of equations for the radial func­
tions are analyzed for even nuclei ( spin 0). It is shown that the terms that give rise to a 
coupling of the equations ( due to the nonspherical part of the Coulomb interaction between 
the a particle and the nucleus) cannot be treated as a perturbation for l > 2. 

An exact numerical solution of the system of equations is gwen for an elliptical nucleus, 
taking into account all multipole interactions, under the condition of constancy of the wave 
function on the nuclear surface. An estimate is made of the influence of higher harmonics 
in the expansion of the equation of the nuclear surface in Legendre polynomials. The com­
putational results are compared with experiment. 

1. INTRODUCTION 

THE study of the intensity of a transitions to 
rotational levels enables us to obtain important 
information concerning the properties of non­
spherical nuclei. The theory of the excitation of 
rotational levels in a decay has been treated by 
Rasmussen and Segal,1 Strutinskii,2•3 Nosov,4 •5 and 
Froman.6 However, comparison of the results of 
the theoretical computations with experiment shows 
systematic disagreements: the results differ by a 
factor of 1 to 10 for the 4+ levels of even-even 
nuclei, and by a factor of several hundred for the 
6+ levels of these nuclei. ( So far it has not been 
possible to reduce the theoretical formulas for odd 
nuclei to a form suitable for practical computation, 
which would allow one to compare them with ex­
periment.) The published theoretical papers con­
tain a variety of simplifications: neglect of certain 
terms in the expression for the kinetic energy of 
the nuclear top, 1 neglect of 24 -pole (in all the 
published papers ) and sometimes even of the 
quadrupole2 interaction between the nucleus and 
the a particle, etc. The effect of such omissions 
has not been properly appreciated, even though the 
results for large angular momenta l turn out to 
be extremely sensitive to such simplifications. 
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Rasmussen and Segal1 give the results of nu­
merical computations of intensity of a decay. 
These computations, however, not only contain 
various simplifications which are not completely 
justified but they are also done for certain special 
values of the eccentricity which were selected on 
the basis of extrapolation of experimental data for 
the rare earths. It is therefore not clear whether 
one could choose the eccentricity in such a way as 
to explain the intensity of the decay to all known 
levels. 

The computations which are presented below 
had three purposes. The first of these was to 
bring the forml}las describing the a decay of 
nonspherical nuclei of arbitrary spin to a form 
suitable for practical calculations. In addition, 
we wanted to explain the applicability of the usual 
methods of computation, in which the quadrupole 
moment of the electrical interaction of the a 
particle and the nucleus ( as well as the higher 
multipole moments) are treated as a perturba­
tion. Anticipating our results, we may say that 
for l :::: 4 (where l is the angular momentum 
carried off by the a particle ) this treatment 
proved to be impossible. Finally, we wanted to 
find out whether the disagreement between experi­
ment and computations which we mentioned above 
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is the result of the approximations and omissions 
of the particular papers themselves, or whether 
it is related to the approximate nature of the fun­
damental starting points of the whole theory: the 
assumption of the constancy of the a particle 
wave function on the boundary of the nucleus and 
the assumption of a simple shape for the nucleus 
(i.e., the assumption that in the expansion of the 
radius vector R (e) to the nuclear surface in 
Legendre polynomials one can drop all terms 
except the first two or three. 

2. GENERAL THEORY OF ALPHA DECAY 

The fundamental equations describing the a 
decay of nonspherical nuclei of arbitrary spin 
have already been obtained in references 1 and 6. 
The formulas which we shall find for the boundary 
conditions at the nucleus make these equations 
suitable for practical computations. In our calcu­
lations we shall limit ourselves to the simplest 
case of "favored" a transitions, i.e., transitions 
in which the parity of the state and the projection 
of the angular momentum on the nuclear axis do 
not change during the a -decay process. 

If the angular momentum I0 of the decaying 
nucleus is different from zero, the probability of 
excitation in a decay of the rotational level of 
the daughter nucleus having angular momentum I 
(I= I0, I0 + 1, I 0 + 2 ... etc.) is given by 

Ml I+I~ 
W'1=----;:z-- ] lan/2 • (2.1) 

1-[l-1,) 

The sum in (2.1) extends only over even values of 
l (we shall indicate such sums by a prime on the 
summation sign). 

The quantities au are the amplitudes at infin­
ity of the radial functions fu ( r), describing a 
particles carrying off angular momentum l (and 
the residual daughter nucleus in a state with angu­
lar momentum I): 

fn (r) ~an exp { i (k1r- '1)1 ln 2k1r)), r _,.. oo, (2.2) 

kJ = '2fLEI/fi2 , 'fJI = 2Ze2fL/1i 2kJ, 

where EI is the a -decay energy in the transi­
tion to the level I. We shall denote the corre­
sponding quantities for the transition to the ground 
level with I = I0 simply as k, TJ, E. 

The system of equations1•2 satisfied by the ra­
dial functions fu ( r) ( cf. also Appendix) is 

d2 f~z + (kJ _z (l + 1) _ 2k1'fJ1 ) fn (r) 
dr . r 2 r 

(2.3) 

oo !'+I, 
= ~' ~ Vnl'l' (r) frz· (r). 

l'-o 1'-fl'-l,f 

The quantities V Il;I' l' ( r) are the matrix elements 
of the noncentral part of the coulomb interaction of 
the a particle and the nonspherical nucleus, which 
can be represented as 

00 

Vn; I'l' (r) = ~' QL(Il; l'l') V L(r); 
L-2 

QL (Il; I'l') = (- I)l-1' V(2l' +I) (2/' +I) 

1 
2Lt 2L + 1 \ VL(r) = it2 - 2- j V(r, 6)PL(cos6)d(cos&), 

-1 

(2.4) 

where W is a Racah coefficient, 7 the quantities 
cj~1 ;I2M2 are Clebsch-Gordan coefficients, and 
the V L ( r ) are the coefficients in the Legendre 
polynomial expansion of the coulomb energy 
V ( r, e ) of the a particle in the field of the non­
spherical nucleus ( e is the polar angle in the co­
ordinate system fixed in the nucleus. 

The system (2.3) should be solved under some 
boundary condition on the nuclear surface r = 
R ( e ) . At the nuclear surface the wave function 
>¥ ( r, e, cp ) , which describes the motion of the a 
particle formed in the decay, depends only on the 
angle e: 

'¥ (R (6), 6, cp) =X (6) 

(where one usually assumes that x (e)= const. ). 
It can be shown (cf. Appendix) that this condition 
gives the system of equations 

~ c~:: I,+!l; l, -nfn [R (6)] Yzn (6, <p) = Ro (6)x (6) an, 0• 

l,l (2.5) 
where Q (the projection of the a particle angu­
lar momentum on the nuclear axis ) takes on all 
possible values. 

The boundary conditions (2.5) (for given R (e) 
and x (e)) together with Eqs. (2.3) uniquely deter­
mine the functions fu ( r ) , and consequently via 
(2.2) give the amplitudes au. 

Making use of (2.5) we can obtain the approxi­
mate formula for the a -decay intensity which we 
have used previously. 8 Let us replace the functions 
fu by functions CfJIZ ( r) which, for r- co, go 
over into exp { i ( kir - TII ln 2kir ) } , so that 

<pn (r) = fn (r) /an. (2.6) 

We multiply both sides of (2.5) by 

c~:: I,+a; z, -nY;n (6, cp) /'Pn [R (6)], 

sum over Q and integrate over e and cp. Using 
the orthogonality property of the Clebsch-Gordan 
coefficients and the orthogonality of the spherical 
harmonics, we get 
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an+ ~"B(I,l; l'l')arz' = Anc~;i,;zo (2.7) 
l'l' 

(the summation is extended over all values of I' 
and l' except the one pair for which I = I' and 
l = l'), In (2. 7) we have introduced the notation 

1 
I R (6) X (6) 

An= 27t ) 'Pn !R (\l)JYzo (6) d (cos 6), 
-1 

B (I' l; I'' l') = ~ c~:: I,+n; I, -nct\+n; 11 , -n 
Q 

(' • 'Pn· (R (6)] 
X l Y 10 'Pn !R (6)) Y z·n drp d (cos 6). 

(2.8) 

As numerical estimates· show, all the quantities 
B ( Il; I' l') are small, so that to a good approxi­
mation the whole summation in (2.7) can be dropped. 
This comes about because the functions Y m with 
different l are orthogonal, while the ratio 
<PI' l' [ R ( 8 ) ]/cp Il [ R ( e ) ] varies only little with 
angle 8. * Neglecting the dependence of this ratio 
on angle, we find that for l ;>! l' the integral ap­
pearing in B ( Il;I' Z') vanishes while for l = l', 
B ( Il;I' Z') vanishes because of the orthogonality 
of the Clebsch-Gordan coefficients with I ;>! I'. 
We therefore get 

(2.9) 

Now let us consider the quantities Au defined 
in (2 .8). The functions cp Il ( r) in the denominator 
depend on r essentially in the same way as the 
Coulomb functions cp W ( r ) which are the exact 
solution of (2.3) when we neglect the right hand 
side (and satisfy the same boundary condition 
at r-oo, 

rpj~l (r) -Hxp i (k1r - Tj1 ln 2k1r), 

as the functions cp Il ( r ) ) . At the nucleus, this func­
tion falls off exponentially with increasing r, so 
that the principal contribution to the integral (2.8) 
comes from the neighborhood of 8 = 0, where 
R ( 8) reaches a maximum. Also making use of 
the fact that all the functions cp Il [ R ( 8 ) ] depend 
on angle in approximately the same way, we find 

An ::::::o C V2t + 1 I C?ll [R (0)], (2.10) 

where {2["+1 = ffi [ Y z0 ( e ) le=o· In a decay, 
the constant 17I in (2.3) is always large compared 
to unity: 17I » 1, which is the reason why the quasi-

*Each of the quantities cp11[R(8)] has a strong angular de­
pendence, but their ratio depends only slightly on angle. For 
the functions cp~/ [R({;I)], which are the solutions of (2.3) with 
the right side set equal to zero, this can be seen from the for­
mulas of the next section. As the numerical computations show, 
this assertion is also valid for the functions cpll[R(O)]. 

classical approximation is well justified. In this 
apprpximation it is well known (also cf. the next 
section) that cp Il ( r ) is representable in the form 

cpn (r) = exp {- Sz (r, k1) ), 

where Sz can be expanded in a rapidly converging 
series 

Sz=A(r, k1)+B(r,k1)l(l+ I)+C(r, k1)l2 (l+ 1)2 

(2.11) 

and 

kl = k -v 1- !l.EJ/ E:::::::; k- k!l.El I 2E' 
.,. 

6.£1 = 27 {I (I+ I)- I 0 (/0 + 1) (2.12) 

+a [(-1 )l+'J. (I+ 1l2) + 1] o1, 'f,) 

( E is the energy of the a -decay to the lowest level 
of the rotational band, which has spin I0 ) • 

Expanding the coefficients of the series (2.11) in 
powers of .6.EI /E, we find that the function 
<Pil [ R = 0] = <Pll (a) can be represented as the 
rapidly converging series 

cpn (a)= c1 exp {- f l (l + I)- { A:1 + .. .}. (2.13) 

For estimating orders of magnitude, it is useful 
to expand the Coulomb function <PIZ(o)(a), which is 
of the same order of magnitude as cp Il ( a), in a 
series of the type of (2 .13). As is easily verified 
[cf. formulas (3.11) and (3.12)], 

(2.14) 

CXc= taneiTJ::::::oO.I, ~c=2TJ(e+ 112 sin2z)::::::o75, 

e =arccos Vka I 2TJ. 

Substituting (2.9), (2.10), and (2.13) in (2.1), we get 
finally 

~ { M} W1 = W0 ~' jcj;;,;zol2 (2l+l)exp -cxl(l+ 1)-~T. 
1-I-l, 

(2.15) 

The coefficients a and f3 in (2.15) should be re­
garded as parameters whose values are determined 
from experiment, since the connection with the 
shape of the nucleus was lost in getting equation 
(2.10) from (2.8). 

We note, finally, that for the case of even-even 
nuclei, when 10 = 0, I= l and .6.E1/E"' l(l + 1), 
formula (2.15) assumes a simple form, given by 
Landau: 9 

(2.16) 

Let us make one more remark concerning the 
derivation of formula (2.15). The one assumption 
in the derivation which was not completely justi-
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TABLE I. Alpha Decay of Some Even Nuclei* 

Intensity of 

Decaying Level spin Particle Level en- ex decay ('7o) 
rx' Nucleus and parity energy kev ergy kev 

Experiment I Computation 

0+ 5158.9 0 75.5 75.5 
Pu240 0.457 2+ 5114.4 45.3 24.4 24.4 

4+ 5014 147 9.1·10-2 7.3.10-2 

0+ 5491 0 71.1 71.1 
Pu2ss 0.435 2+ 5448 43.7 28.7 28.7 

4+ 5352 141.5 0.13 0.11 
0+ 5318 68 68 68 

U232 0.394 2+ 5261 32 32 32 
4+ 5134 0.3 0.3 0.23 
O+ 6110 0 73.7 73.7 

Cm242 0.441 2+ 6066 44 26.3 26.3 
4+ 5965 14.8 3.5·10-2 9.9.10-2 

*Formula (2.16) was used for the computations. The probability of ex decay 
to the 2+ level was used for the determination of the parameter ex'. 

TABLE II. Alpha Decay of Some Odd Nuclei* 

Intensity of 

Decaying Level spin Particle Level en- ex decay ('7o) 

Nucleus (1. ~ and parity energykev ergy kev 
Experiment \ Computation 

Pu•as 0.309 115 I 1!2± 5147 0 72 72 
3!2± 5134 13.2 16.8 16.8 
5!2± 5096 51.7 10.7 10.8 
7!2± 5064 84 3. 7 ·10-2 ! 9.10-2 
9f2± 4991 151 1.3 ·10-2 2. 6 ·10-2 • 

Am•u 0.283 99 5;2± 5482 0 85 85 
7;2± 5439.1 43.4 12.8 12.8 
9!2± 5386.0 97.4 1.66 1.7 

11!2± 5321 164 1.5·10-2 3.4·10-2 
13!2± 5241 245 2·10-3 2.4·10-3 

*Formula (2.15) was used for the computations. The probabilities of ex decay 
to the levels with spin I., + 1 and I., + 2 were used for determining the constants 
ex and (3. 

fied was that the integral (2.8) can be replaced by of the same type as (2.15) but without this defect. 
To do this we need only replace cp Il [ R ( e ).] in 
(2.8) by the Coulomb function qJW [ R (e)]. From 
(2.1), (2.8) and (2.9) we then find 

a quantity proportional to the value of the integrand 
at the point e = 0. However, the form of (2.15) 
does not depend in any essential way on this assump­
tion, since (2.15) also follows from (2.8) and (2.9) 
if we expand the whole integral (2.8) in series: 

1 
\" R (6) X (6) 
j 'PnlR(6)) Y10 (6)d(cos6) 
-1 

= (2l + 1) exP(--} {c + otl (l + 1) + ~ A:1 (2.17) 

It is clear from this that formula (2.15) is quite 
exact. But this precision is obtained at the expense 
of giving up the possibility of theoretical evaluation 
of the constants a and {3 starting from the nu­
clear shape. Thus formula (2.15) cannot be used 
for determining the shape of a -active nuclei. It 
is not difficult to obtain an approximate formula 

1ik I+I, 11 R (6) X (6) 12 
W1 = 47t2 -f z-~:.IC~~i,; zo !2 J

1 
<pW[R(6)) Yz0 (6)d(cos6) 

The integral in this formula can be computed 
numerically for any nuclear shape R ( e ) , as 

(2.18) 

soon as we choose the form of the function x ( e ) 
(usually we assume that x ( e ) = const). For­
mula (2.18) cannot of course pretend to be particu­
larly exact, in particular for large values of l, 
since at l = 4 ( cf. the following section) the 
effect of the right-hand side of (2.3) already pro­
duces a sizeable difference getween the true radial 
functions cp Il ( r ) and the Coulomb functions 
cp~Z) ( r ), which are the solution of (2.3) without 
the right-hand side. 
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In conclusion we give some numerical data il­
lustrating the applicability of formulas (2.15) and 
(2.16) to the description of the experimental data. 
As we see from Table I, Landau's formula (2.16) 
with the single parameter a' gives a good descrip­
tion of the experimental data for l ::::: 4. For l = 6, 
this formula already leads to a marked disagree­
ment with experiment ( by a factor of hundreds ! ) , 
which shows the need for considering the next term, 
a" l2 ( l + 1 )2' in the expansion of the exponential. 
It is therefore natural to expect that formula (2.15) 
will give a good description of the intensities of a 
decay to the first five levels of the rotational band 
(for which l ::::: 4 ), as is shown in Table II. 

As we see from formula (2.8), the intensity of 
the a decay to particular levels can take on 
anomalously large or small values if some par­
ticular term in the Legendre polynomial expansion 
of R ( 9) x ( 9 )/ CfJil [ R ( 9 )] is "resonantly" large or 
small. The smooth representation (2.17) is not 
possible in such a case. This may be the explana­
tion of the large (factor of three) discrepancy be­
tween the calculated and experimental amplitudes 
for the a decay of Cm242 to the 4+ level of the 
daughter nucleus (cf. Table I). 

3. ANALYSIS OF SOME APPROXIMATE METHODS 
OF SOLUTION OF EQUATIONS (2.3) 

The system of equations (2.3) cannot be solved 
exactly by analytic methods even in the simplest 
case of I0 = 0. Various authors have either com­
pletely omitted the right hand side of (2.3) or have 
regarded it as a perturbation and taken it into ac­
count by a method of successive approximations. 
In doing this, only the quadrupole part of the Cou­
lomb interaction was included. We shall show that 
such a procedure for solution of the problem is in­
correct,-since the correction provided by the first 
approximation is of the same order of magnitude de 
as the zeroth approximation. 

For the case of I0 = 0, the equations for the 
radial functions and the appropriate boundary con­
ditions have a very simple form, which can be ob­
tained by setting I0 = 0, I= l, I' = l' in (2.3), 
(2.4), and (2.5). In this case 

QL (l, l, l', l') = (;~':11 j Ci~: !'o /2 = ~ y;,oPLYzo dD.. 

Introducing the dimensionless variable 

x = r I r 0 , r 0 = 2Ze2 I E = 2'Y) I k 

(where r 0 is the barrier radius) into (2.3), and 
setting 

f ll (r) = a1qJ 1 (r), cpz (r)---'; exp i (kzr- 'YJz In 2kzr) for r---'; oo, 

(3.2) 

Here we have introduced the notation 

2 4 2[1 l:J.El(l +I)] v =4 2[~+1(1+1)1 
Xl = 'YJ - 6£ ; l 'YJ X 4'1)2X2 J • 

(3.3) 

~E is the excitation energy of the first rotational 
level, 

Un = ~ Yz'o(tL)U(x, tL) Yzo(tL)dD.; [L =cos6, (3.4) 

and U is the noncentral part of the Coulomb inter­
action, which is given by 

E V (r, fJ) =-[I + U (x, tL)]. 
X 

(3.5) 

The dimensionless constant 17 ( cf. text following 
Eq. 2.12) is approximately equal to 25. 

The solution of Eq. (3.2) without the right hand 
side is the coulomb function cp ~o) ( x), which can 
be represented quite accurately* as 

V-;t . ( ')(~ )'/, cp<o> (x) = _ e2.ti/a __ 
z 2 x~- vz 

(3.6) 

where H~j is the Hankel function of the first kind 
of order Y3, and xz is the turning point (the value 
at which Ki = vz). The function (3._?) coincides with 
the exact solution (3.2) in the region of the turning 
point, and has the correct asymptotic behavior far 
away from that point. The constant in (3.6) is 
chosen so that all the functions cp <J> are real at 
and near the nucleus. 

The goal of the computation is to calculate the 
amplitudes azz = az, which determine the a -decay 
probability Wz through (2.1). According to (2.8) 
and (2.9), 

1 
\ R (6)x (6) 

az = 21t J 'fz [R (e)) Y zo (6) d (cos 6). 
-1 

(3.7) 

We obtain the zeroth approximation a~) to the 
value of al by replacing cpz[R(9)] in (3.7) by 
the Coulomb function cp ~) [ R ( 9 )} , in accordance 
with (2.18). To find a~l) we must substitute 
the first approximation cp<j> in (3.7). In calcu­
lating cp<p , the functions cp ~)( x) and the values 
a~0) and a~) were substituted on the right side 

*Formula (3.6) describes the variation of the function cp ~o) 
in the neighborhood of the nucleus and its dependence on l with 
an accuracy which is no worse than 1 %. 
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of (3 .2). It is then convenient to look for a solu­
tion of (3.2).in the form <p~)(x) = A. 1 (x)<p~)(x). 
We then find for >..1 the equation 

4 2 a(?) 
21-' q~' (o) (x) = _1l_ ~ - 1- U 'P(o) (x) 

I I x I' a\0) 1'1 I' 

with the boundary condition A.z ( oo) = 1. (On the 
left hand side we have neglected the term 
A. i ( x ) <p ~ 0) ( x ) , which is vanishingly small com­
pared to >..[(x)<p'z(o)(x). This is obvious simply 
from the fact that in the region below the barrier 
the function <p ~) ( x) changes by 20 orders of mag­
nitude whereas A.z ( x) only changes by a factor of 
1to10.) 

Performing the integration, we get 

a)?> 00~ 'f')?> (x) U I' 1 (x) 
1- 1 (x) = 1 + '1J ~ (Oj -(-0)-V dx. 

1, a1 x 'i'z (x) x(1-x) 
(3.8) 

According to (3.7), 

(3.9) 

(a is the nuclear radius in units of r 0 ). 

For practical computations it is convenient to 
use the asymptotic representation (3.6) which gives 
a quite accurate description of the behavior of 
<p ~) near the nuclear surface: 

., XI 

'P)o> (x) = ( ~) ' exp { \' V v1 - x~ dx}, ~ < 1. 
vl-xz .\ xz 

X (3,10) 

The exponent is well approximated by the series 
xz 

~ Y\- x~dx =A+ Bl (l + 1) + Cl2 (l + 1)2 , (3.11) 
X 

where 

A (x) = 2'1J (ex: - 1/ 2 sin 2cx:), 

B (x) = 2'1J [ 1~~ (ex:+ f sin 2cx:) + t';~] , 
1 11£ (11£ )" (. 3 1 . ) C (x) = 27) 6£ cot a:+ '1J 6E \.cot a:+ 2 ex:+ 4 sm 2cx: 

+ -1- fcot2cx:- . 1 ) (3.12) 
31)3 \ 8 sm a cos3 a ' 

ex: = arc cos VX. 
(Formulas (3.10), (3.11), and (3.12) are also valid 
for nuclei with 10 "'- 0. In this case (~E/6E) l (l+ 1) 
must be replaced by ~EI and KJ by Kz.) 

We point out for orientation that at the nuclear 
surface A ~ 40, B ~ 0.1 and C ~ 10-4, so that 
for small l the term Cl2 ( l + 1 )2 is unimportant. 
Substitution of (3.10) and (3.11) in (3.8) gives 

oo a)?> C Uz•z (x) 

Az (x) = 1 + '1J ~ a(o) .\ V x (1 - x) 
1'=0 I X 

X exp {B (x) [l' (l' + 1) -l (l + 1)]) dx. 

(3.13) 

In (3.13) the upper limit of integration has been re­
placed by 1. This step is necessary since the ex­
pansion (3.11) .is not valid in the region Vz- Kl < 0. 
Because of the rapid falloff of U l' z with increas­
ing x and the oscillatory character of the func­
tions <p~) in the region x > 1, the integral from 
1 to oo contributes practically nothing. 

For numerical computations it is necessary to 
choose a specific shape for the nucleus, 

R. (fi) = x1 [1 + cx:2P2 (cos fi) + cx:4P4 (cos 0) + ... ). (3.14) 

For an ellipsoid with eccentricity u = -J 1-b2/a2 

and semiaxes a and b (in units of r 0 ), 

ex: = ~[1-~u2_u Vr=rt"] 
2 4u2 3 arc sin u 

= ~2 + 0.16u4 + 0.098 u6 + ... , 
(3.15) 

27 2 4 45 V 1 - u2 2 
cx:4 = 64 u• [35- 40u + 8u ) + 64 u" arc sin u (1 0 U - 21) 

= 0.086 u4 + 0.083 u6 + .. . , 
The quantities Ul'l appearing in (3.13) are 

given by the coefficients in the Legendre polyno­
mial expansion of U ( x, JJ.). In the region outside 
the nucleus (but not in the interior! ) the potential 
of a uniformly charged ellipsoid is correctly given 
by the formula 

oo 2n 

U (x, !L) = 3 ~ (2n + 1)1(2n + 3) (~) P2n (x). (3.16) 
n~I 

Formula (3.16) is not the same expansion as that 
usually used for the potential of an ellipsoid, and 
is considerably more convenient. ( The possibility 
of having different expansions of the potential in 
Legendre polynomials in the region b :s x :s a is 
related to the fact that when this inequality is sat­
isfied the Legendre polynomials are not orthogonal 
in the region external to the nucleus. ) 

For an arbitrary nuclear shape (3.14), the ex­
pansion (3.16) is not exact. As we shall show later, 
the details of the shape of the nucleus have a sig­
nificant effect on the probability of emission of 
particles with high l. This effect is, however, 
associated mainly with the change in the boundary 
conditions, whereas the effect of nuclear shape 
which is associated with changes in the potential 
is not so important and was not taken into account. 
In our computations we therefore assumed the nu­
cleus to be elliptical and used formula (3.16). Then 

~, 1 (ua)2n Y(2l + 1) (21' + 1) 2n, o 2 
Uz•z = 3 ] (2n+1)(2n+3) x 4n+1 (Cz•,o;zo) · 

n-1 

(3.17) 

In Tables III and IV we give the results of compu­
tation of the amplitudes a~) and the factors 
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TABLE III. Probability of a decay to successive rotational 
levels, computed in zeroth approximation for u236 

Computational results I Exper­
imental 

d t a a 

Gt2 0.07 0.095 0.117 0.141 I 0.168 0.195 0.227 
u2 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

a hO) / a~O) 0.38 0.46 0.5::! 0.6~ 0.69 0.74 0. 77 0.57 

a 

a 

~O) /abo) 0.025 0.038 0.054 0.072 0.086 0.106 0.122 0.035 

~O>jabo) 4. 7 ·10-4 9.1 ·10-i 1.6·10-3 2.4 ·10-3 3.3.10-3 4.4·10-3 5.8.1()-3 6.7.10-3 

A ~1 )( a), which determine the first order correc­
tion through Eq. (3.9). The computations were 
done for U236 ( a decay of Pu240 ). X ( 8 ) was set 
equal to a constant in (3.7). The size of the nu­
cleus was fixed by the condition x2 ( 8) Vn = 1, 
where Vn is the nuclear volume. 

TABLE IV. First approximation 
factors A(t) for U236 

l 

u' 1 0.25 1 0.30 1 0.35 1 0.40 1 0.45 1 0.511 

A (1) 
0 1.13 1.1811.24 1.31 1.38 1.45 

A~!) 1.22 1.23 1.25 1.26 1.27 1.29 
A(!) 

4 1. 77 1.82 1.85 1.87 1.89 1. 91 
A (1) 

6 2.13 2.21 2.31 2.42 2.51 2.56 

As we see from Table IV, for actually occurring 
deformations ( u2 = 0.3 ), the correction factor A 
is close to unity only for l = 0 and 2. Starting with 
l = 4 the correction reaches an order of magnitude 
of 100% and the method of successive approxima­
tions is not consistent.* 

We tried to improve the successive approxima­
tion method by substituting cpz(x) = Az(x)cp~>(x) 
on the right as well as the left side of (3.2). When 
this is done one gets a system of coupled equations 
for the relatively slowly varying functions A z ( x ) . 
If one assumes that the Az ( x) vary significantly 
only near the nucleus, expands A z ( x ) in powers 
of ( x -a) around the point x = a, and keeps only 
the zeroth and first power:s, a relatively simple 
system of algebraic equations is obtained for A (a). 
The coefficients in these equations are integrals 
which can be computed numerically. However, the 

*The values found for a 0 and a 2 can be used to determine 
the dimensions and eccentricity of the nucleus. However, when 
this is done there are no quantities left which can be compared 
with experiment in order to check the theory. We also mention 
that the divergence of the successive approximation method for 
l .2: 4 means that the excitation of higher rotational levels occurs 
to a considerable extent through the coulomb interaction of the 
a. particle with the nucleus. 

computation showed that the solutions obtained by 
this method diverge for actually occurring values 
of the deformation. 

It should be mentioned that, aside from the in­
accuracy associated with the use of the successive­
approximation method, the computations involved 
the use of the approximate value (3.11) of the cou­
lomb function and the approximate formula (3. 7) 
which is a consequence of the boundary conditions 
on the nuclear surface. Estimates showed that 
both these approximations are very good, and do 
not contribute errors exceeding a few percent. 
Thus the divergence of the method of successive 
approximations is caused only by the use of the 
method itself. We were therefore faced with the 
necessity of an exact numerical solution of equa­
tions (3.2). 

4. NUMERICAL SOLUTION OF THE EQUATIONS 

The numerical solution of Eq. (3.2) expressed 
in terms of the functions fz ( x) = azcpz ( x ) was 
carried out on the M-2 electronic computer of the 
Laboratory for Control Machines and Systems of 
the Academy of Sciences, U.S.S.R. Seven functions 
( l = 0, 2, ... 12) were included in the computations, 
while the remainder were set equal to zero. The 
solution of the equations was carried "inward" 
from x = oo (actually from x = 3) to the surface 
of the nucleus ( to x ~ 0.1 ) . To determine the a z, 
we constructed the 7 fundamental systems of solu­
tions Cflln (n = 0, 2, ... 12). The solution with 
number n was normalized at x = 3 by there­
quirement that cp zn ( 3) = ozn cp~)( 3 ). Every solu­
tion of (3.2) can be represented as a linear com­
bination of these seven solutions. Thus each of 
the functions we are trying to find can be written 
as 

12 

fz (x) = );'an Cflzn (x), l = 0, 2 .•. 12 (4.1) 
n=o 

(where the prime on the summation sign means 
that the sum runs over even n). It is easy to see 
that the functions fz (x) have the correct asym-
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ptotic behavior for x- oo, so that the an are 
the required decay amplitudes. After substituting 
(4.1), the boundary condition (2.5) gives (in our 
case where 10 = 0, I= Z), 

where 

1~ I 

~ GnXn (6) =X(&), 
n=O 

- (6) = ~~'Pin [R (6)] y 16) 
Xn LJ R (6) 1o \ 

1~o 

(4.2) 

(4.3) 

are well-defined functions which are uniquely de­
termined from the shape of the nucleus. There­
quirement 

x (6) =canst (4.4) 

enables us to find the ratio an/a0• 

As a check, the fundamental systems of solu­
tions <Pzn(x) were computed for n = 0, 2, 4, 6, 8, 
when only five functions f0, f2, f4, f6, f8 were in­
cluded. A comparison showed that then the first 
four functions are changed negligibly. The various 
stages of the solution can be followed on the graphs 
of Figs. 1 to 5. 

To illustrate the orders of magnitude, Fig. 1 
shows the real part of cp ~) ( x) for u236 ( a decay 
of Pu240 ) as a function of x. 

'-,{H) 

-zz 
i( IU 
6 

log kei j<r(x)J 
30 

HO 
t·B ~~1--------+---l---+--+--+--f----+----1 
1·8 
1·4 

ZO L·O 

FIG. 1. Real part of the zeroth approximation functions 
cp)0 )(x) for U236 ; Tf = 26.0. 

l·O 
l·Z 

FIG. 2. Ratio of imaginary to real 

part of cp )0> (x). 

0.41----+--Hl 

FIG. 3. Graph of the functions Xn(ff). 
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FIG. 4. Graph of the function ~ c Xn (8). 
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The coefficients 

the multipole expansion (3.16), (3.17) of the inter­
action potential. Linear combinations must be 
built up from the functions Xn ( (J ) so as to obtain 
a constant value on the nuclear surface, in accord­
ance with (4.2) and (4.4). Each of the functions Xn 
has n/2 roots on the nuclear surface. All of the 
functions increase rapidly as we move from the 
"nose" of the nucleus toward the equator, in ac­
cordance with the decrease of R ( (J) in this direc­
tion. A practical choice of coefficients an satis­
fying the condition (4.4) was made by applying the 
least squares method to 17 points on the nucleus, 
at which the functions Xn were calculated. In 
applying least squares, we used a weight factor 

Cn were selected by the least squares method so that the de­
viation of ~ c X (8) from unity was a minimum. (The constants n n n of 1/xo ( (J ) • The introduction of the weight factor 

enabled us to avoid excess sensitivity to the unim­
portant equatorial region of the nucleus. The large 
number of functions which were to combine to give 
the constant enabled us to fit it quite accurately. 
This is illustrated in Fig. 4 for the example of 
u236 • We see from this figure that the curve of 

correspond to U336). 

Figure 2 shows the ratio of the imaginary part 
of cp <[> ( x) to the real part. As we see from the 
figure, at x = 0. 8 all the functions cp ~) ( x) can 
already be assumed to be real, as should be the 
case according to (3.10). The functions cp zn ( x) 
also turn out to be real at the nucleus. Choosing 
a real constant in (4.4), we also get real values 
for the amplitudes an. 

Figure 3 shows graphs of the functions Xn ( (J ) , 

calculated for 1] = 25.4, a= 0.19, u2 = 0.35. The 
calculations were done keeping all the terms in 

FIG. 5. Graph of the functions Xn(()), calculated 
including five(£., f,z, ••• f8 ) or seven (f0 , f,z, ••• f12) 

functions fn. The solid curves are for lmax = 8, the 
dotted curves for l = 12. max 

2.0 

0 

-1.0 

the "deviations" intersects the value 1, to which 
the fit was made, a number of times which is one 
greater than the number of zeros in the highest 
function Xn ( (J) included in the computation. We 
also note that the fit is quite good for u2 ~ 0.35, 
while it is rather bad for u2 > 0.45. Thus the 
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number of functions Xn (e) included was insuffi­
cient for the latter case. This example illustrates 
especially clearly the need to include a large num­
ber of functions, and the inapplicability of the usual 
analytic methods. Figure 5 shows the functions 
Xn (e) calculated including five ( f0, f2, ••• f8 ) and 
seven ( f0, f2, ••• f12 ) functions fn. 

In our computational procedure we had first to 
assign the nuclear size (the computation was done 
for one volume and various eccentricities), so 
that it is important to examine the extent to. which 
the results are sensitive to the size of the nucleus. 

The results of such a computation are contained 
in Table V. 

TABLE V. Effect of nuclear 
size on a -decay probability 

(for u236) 

Major Ratio of decay probabilities 

semi-

I I 
axis a '12/ao at lao Ga!ao 

0.156 0.56 0.062 0.0022 
0.1'73 0.59 0.071 0.0027 
0.190 0.62 0.080 0.0031 

Comparing Table V with Table VI, which shows 
·the effect of the nuclear shape, we easily discover 
that the nuclear size has a subordinate role in de­
termining the relative intensities of a decays. In 
evaluating the results it should be remembered 
that a change in size of 10% (the extreme values 
of a in Table V differ by 10% from the middle 
value) gives a change of a factor of 5 in the ab­
solute value of the function f0, and consequently 
a change of a factor of 25 in the a -decay intensity. 

TABLE VI. Intensity of a decay 
to rotational levels as a function 

of nuclear shape ( for u236 ) 

a, 
u' 

a,ja0 
a4ja0 
a,ja0 

I Exper­
Computationa1 results imenta1 

data 

0.095 0.141 0.186 0.238 
0.25 0.35 0.44 0.52 
0.41 0.59 0.85 0.93 0.57 
0.033 0.070 0.113 0.163 0.035 
0.0011 0.0030 0.0072 0.011 0.0067 

Table VI gives the results of numerical compu­
tation of Q! -decay intensities for u236 ( Q! -decay 
of Pu240 ) which were carried out on an electronic 
computer. 

The data of Table VI are plotted in Fig. 6. The 
crosses on the curves are the experimental values. 

Comparison of Table VI with Table III shows 
good agreement of the results of the exact calcu­
lations with those of the approximate calculations 
[using formula (2.18)]. As mentioned earlier, for 

O -~--__JOILO ___ O_L.Z-,-0 ------:-'030 

ctz 

FIG. 6. Dependence of intensity of ex decay to successive 
rotational levels on elongation of the nucleus (computation for 
U .. "). 

reasonable values of the eccentricity the first order 
corrections in the analytic computation are not 
small, so that the close agreement between the 
results of the numerical and approximate compu­
tations was unexpected. This leads one to think 
that applying (2.18) to odd nuclei with I0 ¢ 0 also 
should give good results and enable one to deter­
mine the eccentricity of the nucleus simply. 

Such computations were done for Am241 and 
Pu239 • Only one parameter, the eccentricity u2, 

was varied; the nuclear size was chosen to give 
the correct expression for the a -decay intensity 
to the ground state. The results of the computa­
tion are given in Table VII. 

One striking feature of the results in Table VI 
is the clear, though not very large, discrepancy 
between the experimental and calculated values. 
Thus, by setting a 2 = 0.133 we would obtain exact 
agreement of the theoretical and experimental 
values of a2 la0, but we then get a difference of 
a factor of 1.8 in the values of ada0 (and a dis­
crepancy of a factor of 2. 7 in the value of a6 I a0 ) • 

This discrepancy can be eliminated by a suitable 
choice of the coefficient a 4 in formula (3.14) 
which determines the nuclear shape. For arbi­
trary a 4 the nucleus is of course no longer ellip­
soidal, and the matrix elements of the potential 
are determined by a formula which is different 
from (3.17), a point which was not taken into ac­
count in the computations. However, this selec­
tion of the coefficient a 4 does not improve the 
agreement with experiment for the ratio a6 I a0 

but rather makes it worse. This ratio, in turn, 
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TABLE VII. Intensity of a decay to rotational levels for some 
odd nuclei* 

Relative intensity of C1. decay 
Daughter Spin of rota-
nucleus tional level Exptl. I Calculated for I Calculated for 

. elliptical nucleus oval nucleus 

Np•at I 7;2 0.150 0.150 0.146 
10 = 5;2 9/2 2-10-2 2.8-10-2 2.5·10-2 

11 !2 1.8-10-4 1. 2-10-3 1.8-10-• 
13/2 2.4·10-5 1.2-10-4 1.8-10-5 

U23> 3/2 0.232 0.232 0.232 
! 0 = 1/2 5/2 0.148 0.190 0.195 

7!2 5-10-4 6-10-3 5. 7 ·10-4 
9;2 

I 
1.4-10-• 2.7-10-3 2.6-10-• 

*The intensity was computed using formula (2.18). For N~37 , we set 
a= 0.193 and u2 = 0.283 in the case of the ellipse and u• = 0.30 and o. 4 =-0.04 
in the case of the oval. For U235 , we used a= 0.173 and u• = 0.285 for the el­
lipse and u2 = 0.32 and o. 4 =- 0.043 for the oval. It is interesting to note that 
the two nuclei should be assigned almost exactly the same shape. 

can be "fitted into place" by a suitable choice of 
a 6 in form.ula (3.14), but such a procedure can 
hardly be meaningful. For illustration, we give 
in Table VIII the results of the computation with 
this optimum choice of a 4• 

We note that the quadrupole moment Q0 cal­
culated for an elliptical nucleus with a 2 = 0.121, 
is equal to 10 x 10-24 , in beautiful agreement with 
the data found for this region of the periodic table 
from experiments on coulomb excitation.10 

In conclusion, Table IX gives numerically com­
puted intensities for some a transitions in even­
even nuclei. In the computations the nucleus was 
assumed to be elliptical, and the eccentricity was 
chosen to give closest possible agreement with 
experiment for the value of a2 /a0• A striking 
feature is the increase in a 2 as we move away 
from the closed shell c_orresponding to lead, the 
passage through a maximum and the subsequent 
decrease of a 2 as we go toward heavier nuclei. 

APPENDIX 

We give a short derivation of the system of 
equations (2.3) and the boundary conditiun (2.5). 

TABLE VIII. Intensities of a decay to succes­
sive rotational levels, for elliptical ( a 2 = 0.121, 
a 4 = 0.011) and oval ( a 2 = 0.142, a 4 = -0.029) 

shape of the nucleus ( u236 ) 

Experimental Elliptical Oval 
data nucleus nucleus 

azfa0 0.57 0.57 0.57 
a 4 1a0 0.035 0.063 0.035 
as/a0 0.0067 0.0024 0.00015 

The wave function 1/J of the decaying nucleus 
corresponds to a definite value of the total angular 
momentum I0 (the spin of the decaying nucleus ) 
and its projection M on the z axis of a fixed 
coordinate system, and depends on the radius 
vector r ( r, () a• cpa) to the position of the a­
particle in the laboratory system and the Euler 
angles ®i = ®, q,, ~ which determine the orien­
tation of the elongated nucleus: 

(A.1) 

We introduce a system of orthonormal functions 

q, ~!~K ( 9 a• cp a• ®i), which are eigenfunctions of: 

TABLE IX. Intensities of a transitions in some even-even 
nuclei 

Decaying 
ar/a0 I 10 (a,fa,) 10' (a,/a,) I 10' (a,/a,) 

Daughter u' 
nucleus nucleus 

a, 
comp.l exp. .lcomp., comp.j exp:l comp., exp. exp. 

ct•so Frn•s• 0.235 0.088 0.45 0.45 0.53 0.70 2.5 5 
Crn•4s C!•sz 0.226 0.094 0.41 0.41 0.40 0.50 1.4 
Crn242 ct••• 0.272 0.104 0.52 0.53 0.67 0.47 3 14 7 
Pu240 Crn24• 0.291 0.113 0.52 0.55 0.60 0.13 3 8 5 
Pu23S Crn•42 0.328 0.130 0.60 0.60 0.83 0.22 4.5 8 10 50 
u•ss Pu242 0.275 0.106 0.60 0.60 0.70 2.5 2 
uoas Pu24o 0.330 0.121 0.57 0.57 0.63 0.35 2.5 6 
0234 Pu23S 0.335 0.143 0.63 0.63 0.87 0.47 4 8 7 
Th••• 0230 0.406 0.168 0.69 0.69 0.87 0. 77 3 5 
Ra22• Th.••s 0.374 0.153 0.54 0.63 0.50 0.53 1 0.7 
Ern•ts Ra222 0.165 0.060 0.021 0.021 0.08 0.05 
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(1) the angular momentum i of the a particle 
with eigenvalue l ( l + 1) (in the fixed system); 
(2) the angular momentum of the nucleus, f = R + 
11tJ0, where R is the angular momentum of the 
rotation of the nucleus and 11t is a unit vector 
along the symmetry axis of the nucleus ( eigen­
value I (I + 1 ) ) ; (3) the total angular moment~m 
of the system I0 =] + l (eigenvalue }o (I0 + 1 )): 
(4) the projection Ioz of the vector 10 on the 
!ixed z axis ( va!ue M); and (5) the projection 
It of the vec~or I onA the symmetry axis 11t of 
the nucleus, It = 7] t • I (value K). It is not hard 
to show that these functions have the form 

(II) 6 D. 
(f) J,MK ( "' ?<>-• u;) (A.2) 

l 

~ c{~ !, M-m Yzm (0<>-, tf><>-) flJJ._m,K (8;). 
m--1 

Here the Yzm are normalized spherical harmon­
ics, while the D~K are the coefficients in the rep­
resentation of the rotation group, normalized so that 

(' -(!,)' -(!,) • 
~DM,K,DM,K, d (cos 8) difJd'Y = ol,I, 8M,M, 8K,K,, 

where 

-(!) D. \ 1 • (D. "' ) D 0 m (u, ifJ, f)= V 2n Yzm u, 2'- (f) ; 

and e, cp are the polar angles of the vector r a 
in the coordinate system fixed in the nucleus. 

Substitu.ting (A.3) in (A.2) and using the identity 

~ ~~ ~ I,M -(1) o. (!) V 21+1 LJ Czm;l,M-mDmo(u;) DM-m,K(8;) 
m=-1 

~ 121 +1 ci,. K+o D<I,> (o.) 
= V 210+1 IO;IK M.K+O Ui, 

we easily obtain <P i~~K an expression not in 
terms of ea. cpa. as in (A.2), but in terms of the 
angles e and cp in the coordinate system fixed 
in the nucleus: 

rp(l, I) ~ /2/ + 1 ~ ci,, K+O D~(l,) y (c ) 
J,MK = V 2Io+1 LJ IO;IK M;K+O 10 v, tp • 

0=-z (A.4) 

We represent the wave function (A.1) by a series 
in the functions <PPi\K defined by either (A.2) or 
(A.4). The expansi~n coefficients FIZK will be 
functions of r: 

cl'I.M = ~ FnK (r) ifJ}~.UK (0, <p", 8;). (A.5) 
IlK 

The function 1/JioM is a solution of the Schrodinger 
equation: 

(A.6) 

+ 2~, R~ + V (r, 6)} cl'I,M = Ecjii,M. 

7' is the moment of inertia with respect to the 
nuclear symmetry axis, and 7 with respect to 
the perpendicular axis. We note that 

A (!!) A A A (!!) 
R~wi,MK =(I- 'fl~lo)r. ifJI,MK 

= (J '--I 0) rp}:~K = (K -I 0) ifJ)~~K· 

.If 7' - 0, which is the only case we shall treat, 
the terms involving Ri must J;>e absent (since 
they give an infinite energy), from which it fol­
lows very easily that all terms with K >" 10 must 
be absent from (A.5). We should therefore set 
FIZK = r-1 fu ( r) oKlo• which gives 

(A.7) 

Formula (2.1) follows quickly from equation (A.7). 
Writing R =I - 71tlo and noting that Rt<P 1 ~f 

= 0, we get o o 

(R~ + R~) rp):~I, = R2 rpY,~I. 

(JA 2 J2) m.(ll) [/ (J + I) /2) m(ll) = - o "'!,Ml, - o "'l,MI,· 

Using this equality, substituting (A.7) in (A.6), we 

get, after multiplying by q,g;J;£
0 

and integrating 

over angles, the system of equations (2.3) for the 
functions fu, where 

2fL (' <m• [v 2Ze"] <rZ'> Vnl'l' (r) = 1[2 ~ ifJI,Ml, (r, 6)- -,- ifJI,MI,d!J.d8;. 

Let us expand the potential energy of interac­
tion of the a particle with the nucleus in Legendre 
polynomials: 

2fL [ 2Ze2 J "" -1• V(r, 6)--,- = ]VL(r)h(fL), fL =cos 6, 
L=O 

and substitute this expression and (A.4) in the for­
mula defining V Ill'l' ( r). We then get expression 
(2.4) for the Vlll'l'• where 

Q (][· J'l') = (' (f>(lll' p rpU'l') dQ do.. = V(21 + 1) (2/' + 1) 
L , J 10MI, L l,MI, Ut 2/o + 1 

V21' + 1 Clo ~ C/0 , I,+O Cl,, 10+0 CIO 
X 21 + 1 · Lo; l'o .LJ 1'0; !'I, 10; II, l'O;Lo · 

0 

Summation over n using the well known formula 
of Racah7 gives the value (2.4) for QL. Substitu­
tion of (A.4) in (A. 7) gives 
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""• J 21 + 1 1,. I,+n fn (r) -u,) ljl1,M = L.Jr 2lo+i Cm;II, -r -Yzn(O,<p) DMJ.w.(8;). 
nn (A.8) 

On the nuclear surface, where r = R ( (} ) , the 
wave function should not depend on cp • This will 
be the case only if, when we substitute r = R (e) 
in (A.8), all terms in the sum over Q except the 
term for Q = 0 vanish. 

It then follows from (A.8) that at the nuclear 
surface 

ljll,M IR (6), 6, <p; 8;] =X (6) D'k'l. (8;), (A.9) 

where 

is some function of e whose specific form will 
depend on ~he structure of the a -particle function 
in the interior of the nucleus. Substituting r = 
R ( (}) in (A.8), equating the right sides of (A.8) 
and (A.9), multiplying both sides of the resulting 

equations by { D~0!Io+Q ( ®i)} * and integrating 

over ®i, we get the boundary condition (2.5). 
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It is shown that relativistic detonation waves in a magnetic field possess properties similar to 
those of the ordinary waves. Solutions of the equations at the discontinuity are presented for 
the relativistic and nonrelativistic cases. · 

SHOCK waves in a plasma situated in a magnetic 
field have been discussed frequently in recent 
times. In some of this work, for example that of 
Hoffman and Teller, 1 use was made of the relativ­
istic hydrodynamic equations. 

In the present article we consider "perpendicu­
lar" detonation waves, i.e., waves propagated at 

right angles to the direction of the magnetic field. 
One may expect that the influence of the magnetic 
field will become noticeable when its energy per 
unit mass of the medium becomes comparable with 
the energy liberated in the medium. The calcula­
tions are made in a relativistic manner, although 
for those thermonuclear fuels which are now known 


