PHOTOPRODUCTION OF ELECTRON AND y-MESON PAIRS ON NUCLEONS

For q® « M? (q®< p?) we neglect all the terms
in (17) except for the first one, containing ®p.y.
For g » m? it is possible to neglect &, entirely,
the remaining functions assume the simple form

Pp_u= (P2 +p2)q°L |V ¢* + 4¢°m* —2p,p_;

® = — 462 1n (p,max / M).

(19)

We leave L in its previous form, in view of
the large coefficients in the terms with m?,

Formula (17) can still be integrated over
dp, for p; + p_=const =~ w (q2 = const) and
2Mdp_ = —dqg?®. Then, for g2 > m?:

— 34% [ 2/ 0 ____‘ﬁ____ _i

do = — o3 5 {a (q)[ L 2]
,9 -

——3abz4—22[lnm max —IJ

2m

(20)

g L @d 13
+ b24_/l42[1/q4+ GqPm? +61n 2m -2—]} )
Analogous results can also be obtained for
bremsstrahlung. For this purpose it is necessary
to replace in the matrix elements (2)

p+1 5+—'>—‘P1, —¢€1,, P 3-'—>P2, g, W, O—>—0, —O
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and in formulas (9) to take d®p,d’w/(27)% instead
of the statistical factor d°p,d®p_/(2m)8. The re-
sults can be obtained from formulas (10) to (15)
by substituting

p+/:;ip+ do,do_ —> .gj_ ﬂo")l dop,do.;

8‘+-"'a'; ‘3‘_‘—’&_8'% Pp—™>—P1

(¥ is the angle between p, and py).

In conclusion, the author expresses sincere
gratitude to I. M. Shmushkevich for suggesting
the topic and for valuable advice.

1G. E. Masek and W. K. H. Panofsky, Phys. Rev.
101, 1094 (1956); Masek, Lazarus, and Panofsky,
Phys. Rev. 103, 374 (1956).

2Akhiezer, Rozentsveig, and Shmushkevich,
J. Exptl. Theoret. Phys. 33, 765 (1957), Soviet
Phys. JETP 6, 588 (1958).

3C. F. Weizsaker, Z. Physik 88, 612 (1934).

Translated by J. G. Adashko
21

JANUARY, 1959
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A discussion is given of the correlation of the polarization of internal-conversion electrons
with the direction of emission of the electrons in the preceding p-decay. If one neglects the
Coulomb field of the nucleus, then in the case of a magnetic multipole the polarization is lon-
gitudinal and does not depend on the energy. In the case of an electric multipole both longi-
tudinal and transverse polarizations occur, with dependence on the energy.

].- Owing to the nonconservation of parity in B-
decay the daughter nucleus is polarized in the di-
rection of the emitted pB-decay electron (the par-
ent nucleus is supposed unpolarized, and the direc-
tion of emission of the neutrino is not observed).
Therefore if an internal-conversion process occurs
after the pB-decay, the conversion electrons must

possess a preferred polarization.* This effect can
be used both in studying B -decay and also in study-
ing the properties of nuclear levels, since (as will
be shown below) the character of the polarization

*Qur attention was called to the existence of such an
effect by A. I. Alikhanov and V. A. Liubimov.
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of the conversion electrons depends in an essential
way on the order and type (electric or magnetic)
of the multipole involved in the nuclear transition.

The general expression for the polarization vec-
tor <o> of the internal-conversion electron, for
the case of an allowed B -decay transition, has the
following form:

a(ven)n + b (v—=(v-n)ny, (1)

where a and b are constants depending on the
angular momenta of the nuclear states and the en-
ergy of the transition, cv is the velocity of the
particle, and n is the unit vector of the direction
of the conversion transition.

In fact, Eq. (1) is a general expression with the
following properties: (1) it is a polar vector, cor-
responding to the fact that the polarization appears
only as a result of the nonconservation of parity in
B -decay (<o> is an axial vector); (2) it is in-
variant under replacement of n by —n, which
corresponds to the conservation of parity in the
internal-conversion process; (3) it is proportional
to the velocity vector of the B particle, which de-
termines the polarization of the daughter nucleus.

2. Let us find the density matrix characteriz-
ing the polarization state of the nucleus formed as
a result of the B-decay. If this nucleus is in a
state with angular momentum j,, and if the initial
nucleus was unpolarized and the direction of the
neutrino was not observed, then the general ex-
pression for the density matrix that determines
the distribution of the angular-momentum compo-
nent m, must have the following form:

_ 1 iz + 1\ Jam,y
pmzm: - 2]2 + 1 {8m‘m; + ( j2 ) ch:m:nlu' Uu} ’ (2)

where vH=(-1)#v_, are the components of the
vector (v'=vy; vl==F (vgx = ivy )/21/%), and
C... are the coefficients of vector composition
( Clebsch-Gordan coefficients ), which differ from
the matrix elements of the angular-momentum
operator J only by a normalizing factor:
(im|Ju] jm’) = (jm’ | J*| jm) = V] (7 + 1) Clt, 1u-

The constant ¢ can be expressed in terms of
the constant that appears in the expression W for
the angular distribution of the B particles from
the decay of polarized nuclei.

For this purpose let us consider the g-decay
of a polarized nucleus with angular momentum j,
into a nucleus with angular momentum j;. The
probability for the decay can be written in the
form

W =SppUtU,

where U is the operator describing the transi-

tion j, — j3 and p0 is the density matrix of the
state j,. If the state of polarization is defined by
the average angular momentum vector <J> ,
then

© = L 3 _3Yw clme .
mymy 2z 1| mma ez 1) e 1

The matrix UTU is proportional to the expres-
sion (2). Indeed, the density matrix (2) is deter-
mined by the transition j3— j;, and since the
state j3 is not polarized,

= (U*),,, ISPUTU.

pmz m’y

Consequently, apart from a common factor

3
W/~(8 ) I

Jamz \
mafy * VisGa+ 1)

jam's, 1 v}

3 , j2 41 \'l2 p ~jamy w
X‘(Omzmz -+ ( i ) sCl.zm,h 1 MU .
Performing the summation over m, and mj;, we
get

W=1+LIV/]j. (3)

Thus we can omit consideration of the B -decay
stage of the process, and determine the constant
¢ in Eq. (2) from a comparison of Eq. (3) with
the known expression for W.!»2 In particular, for
an allowed B transition in the case of S, T, A,
and V interaction variants (with neglect of Cou-
lomb forces) ¢ is given by

{=2Re {(csc'; + Cey—c Lr —Cieh)

j 'l2 N . 2] g l
X (]'2'; 1) 8,,MeMor + (erer —e ) App | Mo

x {(lesl+1esl* 4+ ley P+ [ey ) [ Mg [P
+(ler P+l P e P+ 1 ) [ Mer P}
where
Apy={ia(a+ 1) —js(s+ 1) + 2} /{2j2 (j2 4+ 1)},
o= (1), atr = (§2).

3. Suppose the nucleus makes a further transi-
tion from the state j,m, to the state jym;. The
matrix element of the internal-conversion process
can be written in the following form3 (omitting
common factors that are of no importance for our
purpose):

Mumym, = (2 | QLM | frmy)® S s (r) BEY (1) ¢y (r)dr. (4)

Here Q(Ii\l%/l is the operator of the 2L—pole elec-

tric (A =1) or magnetic (A= 0) moment of the
nucleus, corresponding to the transition in ques-
tion; ¢; and ¥, are the wave functions of the

electron for the initial and final states; and B(ﬁ{q
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is the operator of the interaction of the electron
with the multipole field. This operator has the
following form

B =aYu(r/r)Gy(or),

(+)6e(en)
l/2L+ LaY;, 1, M( )Gl—l((‘)r)

G (x) = i Hitly, (1) [V 5,
where « is the Dirac matrices, w is the energy
of the transition, H(!) is a Hankel function, Ypp
is a spherical harmonic, and Y,y is a spheri-
cal vector, the components of which are defined in
the following way:

(Ym)* = Ciy Y tm.

We confine ourselves here to the free-electron
approximation

u
b = ( q9
et+m u
where € and q are the energy and momentum of
the conversion electron, u and u, are two-com-
ponent spinors, and ¢ is the Pauli matrices. Then
the integral in Eq. (4) reduces to the following:

)eiq'; =) e=m+o,

gel'qu,m (;) Gy (or) dr ~Y 1 (n) (%)’; n=-21,
Omitting unimportant factors, we get the ex-
pression for the matrix element
Moym, = (jaa | QLa| juma) w'V sty (5)
where in the case of a magnetic multipole (A =0)
Vih = (o-n) oY 1u(n), (5a)

and in the case of an electric multipole (A =1)

.
Vi =Yium)+ Y L wen)oYe 1 m(n);  (5b)
. eE—m
K = e_-i—-—m_ .

The probability of internal conversion is given
by the quantity

P = (3 + (B2 )l

W=p MymM,;, . (6)

mym,
If we represent W in the form
W = Paguau;,

then the density matrix of the conversion electron
is obviously equal to P/Sp P. Furthermore, if P
has the form

P=A(l + %), (62)
then the polarization vector of the conversion
electron is given by

(=t (6b)

4. Substituting Eq. (5) into Eq. (6), we use the
fact that since the electron in the initial state is
not polarized u?yuﬁ Then we get the fol-
lowing expression for P:

P =0, . (2| QUM | jyma)” (jams | QT | farmy) VEMV L.
(7)

= dag-

The product of the last two factors, which is a
matrix with respect to the spin variables, can be

represented in the form
VEWER = Ritw + oSS (8)

Using the expressions (5a) and (5b), we get

(0 . . *
Riw = Yom-Yirw, Siw =i [Yom % Yiiuml;

2L +1 .
Ritw = (1429 Y uYim + + Y 1, MY, -1, M3
. (8a)
Sith = i Lf ¥ [Yozm X Yoo

L+

— (% 4 »2) l/

(YLLMYLM + YimYiiw)-

The matrix element of the multipole moment
can be represented in the following form:

(jame | QLM | i) = Q“’C’ﬁf LM, (9)

where QO‘) does not depend on the quantum num-
bers m; and m,. Substituting Egs. (2), (8) and
(9) into Eq. (7), we get, omitting unimportant com-
mon factors:

0¥ Clime uChms e LRGEbe + oS5i

(summation over all repeated indices is understood), and using the relations

2 Mz 2js+ 1 . Jamz J2ma Izm _ 2+ 1 LIL+DFja(o+D—i1(2+1) ~Lm
Clm J L ls . Cchm™ C uC I2 J2\J s
s, LG, Lo = ST OMM T VYO T g VIT OGN | LM
we have
P=R%)M+cs%}u_i_CUML(L+1)+]2(]2+1)—]1 (h+ “CLM 1u(R$}M’+°S(ItI)M’ . (10)

2,VLL+1)
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In Eq. (10) the first two terms, after they are
summed over M, cannot depend on n. Therefore

Soim =0, R4y = const = = SRW
From the expression (8a) it follows that

oL + 1
aL+1  pa

o)
RMM = 4

2L 41 N2L 1
) 4

(1+2n+

For the calculation of the last two terms in Eq. (10)
we take the z axis in the direction of the vector v.
Then instead of the sum over u there remains
just the one term with p =0, and M’ = M. Using
the explicit expression of the coefficient

Citro=M|VL(L+T)

and the fact that R&d}\’l does not depend on the sign
of M, we get

2 MRy =

We have still to find the last term in Eq. (10),
i.e., the quantity

0CEM, 1089k (11)

According to Eq. (8a), in the case of a magnetic
multipole the vector S(0) is directed along n,
since Yj 1M is a transverse vector. This means
that for magnetic transitions the coefficient b in
Eq. (1) is zero.

Comparing Eq. (11) with the first term in Eq. (1),
we see that

v X MSHy = f(va)n = fon,n’ (12)
M

where f is a constant. To determine this con-
stant we integrate Eq. (12) with respect to the
solid angle; this gives

T 1= M\SCndo
M

Substituting the explicit expression for Sf\?[)M, we
find

_ 3 1 _ 2L+ 14
f“ﬁL(L-H)%MZ— i

According to Eq. (8a), in the case of an electric
multipole S 1) contains two terms. The first term,
Sf,l) , is directed along n and is calculated in the

(0)

1
same way as S '. The second term Si), propor-

tional to Yy,jMm, is perpendicular to n, and con-
sequently must have the form of the second term in
Eq. (1), i.e.,

[ 2 MSSI_)MM =g (V _ (V-l;) ll).
M
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Using the explicit form of SS) and integrating this
equation over ‘the angles, we find

_2L -1-1

VIZ+D.

Substituting these results into Eq. (10), we get on
the basis of Eqgs. (6a) and (6b) the following expres-
sions for the polarization vector of the conversion
electron:

(a) in the case of a magnetic multipole

() = (rl/ j») n(n-v) (13)
(b) in the case of an electric multipole
L+1 K
O ="TrnTee 0L T
X {(x -+ »?) (n(n.v)— V) + }f (n-v)n}, (14)

r=[L{L+1)+j0e+1)—j(+ D]/2L(L +1).

We see trom Eq. (13) that in the case of a mag-
netic multipole the polarization is longitudinal and
does not depend on the energy of the polarization
electron. This feature is, however, closely con-
nected with the free-electron approximation which
has been used here. Therefore a treatment of this
problem with exact wave functions for the conver-
sion electron would be of interest.

According to Eq. (14), in the case of an electric
dipole the polarization is decidedly energy-depend-
ent. When the speed vk of the conversion electron
is small, the transverse polarization is propor-
tional to vi /c?, and the longitudinal polarization
to (v /c )4. These results also need to be made
more precise, since for small velocities the effect
of the Coulomb field of the nucleus can be impor-
tant.

We express our sincere gratitude to Academi-
cian A. I. Alikhanov and V. A. Liubimov for their
interest in the work and a number of helpful dis-
cussions.
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