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For q2 « M2 ( q2 ~ IL 2 ) we neglect all the terms 
in (17) except for the first one, containing 4>B-H· 
For q2 » m2 it is possible to neglect 11> 1 entirely, 
the remaining functions assume the simple form 

<PB-H = (p+ + p:._) q2L) V q4 + 4q2m2 - 2p+p_; 

<P =- 4w2 1n (p+.&max 1m). 

We leave L in its previous form, in view of 
the large coefficients in the terms with m2• 

Formula (17) can still be integrated over 
dp+ for P+ + p_ = const ~ w ( q2 = const) and 
2Mdp_ = - dq2• Then, for q2 » m2: 

da = - ~3 .!!:!L {a2 (q2) [ q• L - J...] 
3q• V q• + 4q2m2 2 

(19) 

-3ab- In-- -1 q2 L <Ullmax -j 
M2 2m 

(20) 

+ b2 ..!!_ [ . q•L + 6 In <Ullmax _ ~]} • 
4M 2 V q• + 4q•m• 2m 2 

Analogous results can also be obtained for 
bremsstrahlung. For this purpose it is necessary 
to replace in the matrix elements (2) 

and in formulas (9) to take d3p2d3w/ ( 27T )6 instead 
of the statistical factor d3p+d3p_ / ( 27T )6 • The re­
sults can be obtained from formulas (10) to (15) 
by substituting 

P+P-dP+ do do -:. ].2_ d<U do do · 
(i)3 + - Pt (1.) Pz Wt 

( J-2 is the angle between p2 and p1 ) • 

In conclusion, the author expresses sincere 
gratitude to I. M. Shmushkevich for suggesting 
the topic and for valuable advice. 
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A discussion is given of the correlation of the polarization of internal-conversion electrons 
with the direction of emission of the electrons in the preceding {3 -decay. If one neglects the 
Coulomb field of the nucleus, then in the case of a magnetic multipole the polarization is lon­
gitudinal and does not depend on the energy. In the case of an electric multipole both longi­
tudinal and transverse polarizations occur, with dependence on the energy. 

l. Owing to the nonconservation of parity in {3- possess a preferred polarization.* This effect can 
decay the daughter nucleus is polarized in the di- be used both in studying {3 -decay and also in study-
rection of the emitted {3 -decay electron (the par- ing the properties of nuclear levels, since (as will 
ent nucleus is supposed unpolarized, and the direc- be shown below) the character of the polarization 
tion of emission of the neutrino is'not observed). 
Therefore if an internal-conversion process occurs 
after the {3 -decay, the conversion electrons must 

*Our attention was called to the existence of such an 
effect by A. I. Alikhanov and V. A. Liubimov. 



~~~~~- ----------

112 V. B. BERESTETSKII and A. P. RUDIK 

of the conversion electrons depends in an essential 
way on the order and type ( electric or magnetic) 
of the multipole involved in the nuclear transition. 

The general expression for the polarization vec­
tor <u> of the internal-conversion electron, for 
the case of an allowed {3 -decay transition, has the 
following form: 

a (v·n)n + b (v-(v·n)nJ, (1) 

where a and b are constants depending on the 
angular momenta of the nuclear states and the en­
ergy of the transition, cv is the velocity of the {3 

particle, and n is the unit vector of the direction 
of the conversion transition. 

In fact, Eq. (1) is a general expression with the 
following properties: (1) it is a polar vector, cor­
responding to the fact that the polarization appears 
only as a result of the nonconservation of parity in 
{3 -decay ( <u> is an axial vector); (2) it is in­
variant under replacement of n by - n, which 
corresponds to the conservation of parity in the 
internal-conversion process; (3) it is proportional 
to the velocity vector of the {3 particle, which de­
termines the polarization of the daughter nucleus. 

2. Let us find the density matrix characteriz­
ing the polarization state of the nucleus formed as 
a result of the {3 -decay. If this nucleus is in a 
state with angular momentum h. and if the initial 
nucleus was unpolarized and the direction of the 
neutrino was not observed, then the general ex­
pression for the density matrix that determines 
the distribution of the angular-momentum compo­
nent m 2 must have the following form: 

P , = -. _1 -{a , + (i2 -:f-1 )''·~c'·m,, v~-<}, (2) 
m,m, 2]2 + 1 m,m, ]2 j,m,,!~-< 

where vJ.L = ( - 1 )J.L v -J.L are the components of the 
vector (v0 = Vz; v±1 = 'f (vx 'f ivy )/2112 ), and 
C: : . are the coefficients of vector composition 
( Clebsch-Gordan coefficients), which differ from 
the matrix elements of the angular-momentum 
operator J only by a normalizing factor: 

(jm I JIL I jm') = (jm' I J~-' I jm) = v j (j + 1) cf:;:., IW 

The constant t can be expressed in terms of 
the constant that appears in the expression W for 
the angular distribution of the {3 particles from 
the decay of polarized nuclei. 

For this purpose let us consider the {3 -decay 
of a polarized nucleus with angular momentum h 
into a nucleus with angular momentum h· The 
probability for the decay can be written in the 
form 

w = Sppou+u, 

where U is the operator describing the transi-

tion h - h and p0 is the density matrix of the 
state h· If the state of polarization is defined by 
the average angular momentum vector <J> , 
then 

The matrix u+u is proportional to the expres­
sion (2). Indeed, the density matrix (2) is deter­
mined by the transition h - h. and since the 
state h is not polarized, 

Pm m' = (U+U)m m' jSpu+u. z 2 2 2 

Consequently, apart from a common factor 

w (' 3 <Jv> cJ,m, \ 
~ om,m:+ Yidi2+1) j,m',,tv) 

Performing the summation over m 2 and m2, we 
get 

(3) 

Thus we can omit consideration of the {3 -decay 
stage of the process, and determine the constant 
t in Eq. (2) from a comparison of Eq. (3) with 
the known expression for w.1•2 In particular, for 
an allowed {3 transition in the case of S, T, A, 
and V interaction variants (with neglect of Cou­
lomb forces ) t is given by 

where 

x ( ( I c s j2 + I c~ 12 + I cv 12 + I c~ 12) I MF 12 

+ {I cr 12 +I c~ 12 +I c A i2 + I c~ 12) I MGT l2t 1 • 

A"',= U~ U2 + 1)- ja Ua + 1) + 2} I {2j2 U2 + 1)), 

MF = (~ 1), MoT=(~ cr). 

3. Suppose the nucleus makes a further transi­
tion from the state hm2 to the state hm1• The 
matrix element of the internal-conversion process 
can be written in the following form3 (omitting 
common factors that are of no importance for our 
purpose): 

Mm,m, = (j2m2/ Qt~ I hm1)" ~ ljl; (r) Bt~ (r) IJI1 (r) dr. (4) 

Here Q~k is the operator of the 2L-pole elec­
tric (A. = 1 ) or magnetic (A. = 0 ) moment of the 
nucleus, corresponding to the transition in ques­
tion; I/J1 and I/J2 are the wave functions of the 
electron for the initial and final states; and B ~k 
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is the operator of the interaction of the electron 
with the multipole field. This operator has the 
following form 

B~1 = a~Y LLM (r / r) G L(wr), 

B~1 = YLM( +) GL(wr) 

./;.L+1 (r) + r -L-a~YL,L-l,M, GL-1(wr). 

G1 (x) = i 1H\~·1,(x)/Vx, 
where a is the Dirac matrices, w is the energy 
of the transition, H(l) is a Hankel function, Y LM 
is a spherical harmonic, and YLZM is a spheri­
cal vector, the components of which are defined in 
the following way: 

(YuMt = Cf:!1 '"Ytm· 

We confine ourselves here to the free-electron 
approximation 

where E and q are the energy and momentum of 
the conversion electron, u and u0 are two-com­
ponent spinors, and u is the Pauli matrices. Then 
the integral in Eq. (4) reduces to the following: 

(" . (r) (q)·1 q .\ e•qrylm -,- Gc (wr) dr ~ Ycm (n) <:> ; n = q. 

Omitting unimportant factors, we get the ex­
pression for the matrix element 

(5) 

where in the case of a magnetic multipole ( A. = 0 ) 

Vi?k = (o·n) oY LLM (n), (5a) 

and in the case of an electric multi pole (A. = 1 ) 

() ,j2L+1 
VlM=YLM(n)+ r -L-x(o-n)oYL,L-1,M(n); 

e:-m 
x=e:+m. 

(5b) 

The probability of internal conversion is given 
by the quantity 

(6) 

If we represent W in the form 

then the density matrix of the conversion electron 
is obviously equal to P/Sp P. Furthermore, if P 
has the form 

P =A (1 + ~o), 
then the polarization vector of the conversion 
electron is given by 

(o) = ~-

(6a) 

(6b) 

4. Substituting Eq. (5) into Eq. (6), we use the 
fact that since the electron in the initial state is 
not polarized u~u~* = oaf3· Then we get the fol­
lowing expression for P: 

P ( . I Q(A) I . >' (. . 'Q<'> I . ) v<A> v<~->· = Pm,m; f2m2. LM hm1 }2m2 1 LM' hm1 LM LM'• 

(7) 

The product of the last two factors, which is a 
matrix with respect to the spin variables, can be 
represented in the form 

(8) 

Using the expressions (5a) and (5b), we get 

(I) • 2L + 1 • 
RMM' = (1+2x) YLMYLM' + -L-x2 Y L,L-L, MYL,L-1, M; 

S(l) • L + 1 • 
MM' = t -L- X2 (Y LLM X y LLM] 

I L +1 • • 
- (x + x2) J -L-(YLLMY LM' + YLMYLLM'). 

The matrix element of the multipole moment 
can be represented in the following form: 

(Sa) 

(9) 

where Q(A.) does not depend on the quantum num­
bers m 1 and m2• Substituting Eqs. (2), (8) and 
(9) into Eq. (7), we get, omitting unimportant com­
mon factors: 

(summation over all repeated indices is understood), and using the relations 

cj,m, cj,m, - . 2j2 + 1 ' •. 
j,m, LM j,m, LM'- 2L + 1 °MM • 

we have 

p = R(A) + oS(A) + ~v'"L (L + 1) + h (h + 1)- it (h+ 1) eLM, (R(A) . + oS(),) ·). 
MM MM Zj2 y L (L + 1) LM, 1" MM MM (10) 
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In Eq. (10) the first two terms, after they are 
summed over M, cannot depend on n. Therefore 

S(A) 0 (A) 1 I (A) d 
MM = , RMM = canst = -470 J RMM o. 

From the expression (Sa) it follows that 

R(O) - 2L + 1 R(l) - (I + 2 + 2L + 1. 2\, 2L + 1_ 
MM - ~ ' MM - x L X j 47t • 

For the calculation of the last two terms in Eq. (10) 
we take the z axis in the direction of the vector v. 
Then instead of the sum over p, there remains 
just the one term with p, = 0, and M' = M. Using 
the explicit expression of the coefficient 

Ct1:l.1o = M !VL (L +I) 

and the fact that R~k, does not depend on the sign 
of M, we get 

~MR~~=O. 
M 

We have still to find the last term in Eq. (10), 
i.e., the quantity 

(11) 

According to Eq. (Sa), in the case of a magnetic 
multipole the vector s(o) is directed along n, 
since Y LLM is a transverse vector. This means 
that for magnetic transitions the coefficient b in 
Eq. (1) is zero. 

Comparing Eq. (11) with the first term in Eq. (1), 
we see that 

v] MS.\'l~w = f (v·n) n = fvnzn' (12) 
M 

where f is a constant. To determine this con­
stant we integrate Eq. (12) with respect to the 
solid angle; this gives 

~" f = ]M ~s;o1Mdo. 
M 

Substituting the explicit expression for S~M• we 
find 

According to Eq. (Sa), in the case of an electric 
multipole s<1) contains two terms. The first term, 

s~,1 )' is directed along n and is calculated in the 
(o) (1) 

same way as S . The second term S .J.. , propor-

tional to Y LLM· is perpendicular to n, and con­
sequently must have the form of the second term in 
Eq. (1), i.e., 

~ (1) . ' v ~ MS1_ MM = g(v- {v·n)n). 
M 

Using the explicit form of si1) and integrating this 
equation over -the angles, we find 

g = 2L ~~ 1 V L (L + I). 

Substituting these results into Eq. (10), we get on 
the basis of Eqs. (6a) and (6b) the following expres­
sions for the polarization vector of the conversion 
electron: 

(a) in the case of a magnetic multipole 

(c) = (rC / j 2) n (n.v); (13) 

(b) in the case of an electric multipole 

( > L+1 1: 
c = r 1 +2x+x2 (2L +1)/L J;' 

x{(x+x2)(n(n·v)-v)+ x~ (n·v)n}, (14) 

r = [L (L +I)+ j2(j2 +I)- ir(j1 + I)]/2L(L +I). 

We see from Eq. (13) that in the case of a mag­
netic multipole the polarization is longitudinal and 
does not depend on the energy of the polarization 
electron. This feature is, however, closely con­
nected with the free-electron approximation which 
has been used here. Therefore a treatment of this 
problem with exact wave functions for the conver­
sion electron would be of interest. 

According to Eq. (14), in the case of an electric 
dipole the polarization is decidedly energy-depend­
ent. When the speed Vk of the conversion electron 
is small, the transverse polarization is propor­
tional to vk I c2, and the longitudinal polarization 
to (vk/c)4• These results also need to be made 
more precise, since for small velocities the effect 
of the Coulomb field of the nucleus can be impor­
tant. 

We express our sincere gratitude to Academi­
cian A. I. Alikhanov and V. A. Liubimov for their 
interest in the work and a number of helpful dis­
cussions. 
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