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Here 

dsv =- 2Im (gsg';,.- g~g~); dsr = 2Im (grg; + g~g;); dvr = --2Im (gvg~- g~g;). 

Ws=E~'-(ME"- ~)+m~(M-E,); lllsv=E~m~'-+E~'-(E,- M) m~'-+m~'- (~ -ME"-m~); 

lllsr = E~ ( ~ - 2E"+M) + E~'- {- m~ + E;;;~ + (E,- M) G~11 - E" )} + M-1 {m~ ( ~ - m~ ) +(Err- M) E"m~ } ; 

lllv = 2£! + E~ (-2M+ 2E") +E~'- {({--ME") -2m~}+ m~ (M-E,); 

lPvr = E~ M-1m~'- (£,.,- M) + E~'-M-1 {{-m~'- + E';,m~'- + Mm~'- (M- 3£")} + 1\IP {m!J.( ME,--}) (M-E")}; 

<Dr= M-2E' {4E"M -2m2 - 2M 2}+ E 2 M-14(_~-- E"t::. -ME;,+ E2 ) + E.,M-2 {2m2 m2 - 2E2 m2 
!J. , " !J. \ 2 2M , "' , " iL " !L 

+ ( ~ - ME,.)(2ME,- ~-E;+ m; l} + (M -E,)(E';, -m;)m~M-2 • 
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Excitation of hydromagnetic and magnetoacoustic waves by external currents is investigated. 
Damping of the waves as a result of conductivity and viscosity is taken into account. The in­
tensity of excitation by currents is compared with the intensity of excitation by mechanical 
means. 

l. As is well known, propagation of hydromagnetic 
and magnetoacoustic waves is possible in a conduct­
ing liquid located in an external magnetic field. 1 In 
the experiments of Lundquist,2 hydromagnetic waves 
were excited in liquid mercury by mechanical 
means, with the use of a rotating disk equipped 
with blades. Excitation of hydromagnetic waves 

is also possible by means of external variable cur­
rents. It is therefore of interest to determine the 
intensity of the excitation of hydromagnetic waves 
by this method and to compare this intensity with 
that of the excitation of hydromagnetic waves by 
mechanical means. The present paper is devoted 
to a consideration of this problem. 



THEORY OF EXCITATION OF HYDROMAGNETIC WAVES 83 

. 2. Let us consider an ideal compressible con­
ducting liquid located in an external magnetic field 
H0. The motion of the liquid in the present of ex­
ternal currents j 0 will be determined by the equa­
tions of hydrodynamics: 

p -~~ + p (v.\7) v =- Vp + ~ [j x H], 

~~ + div (pv) = 0 

and Maxwell's equations 

(1) 

curl E =- ~ ?£-, div H = 0, curl H = -~ (j + j 0 ), 

(2) 

where v and p are the velocity and density of 
the liquid, p is the pressure, E and H are the 
electric and magnetic fields arising in the liquid, 
j is the current density defined by the relation 

j=cr(E+ ~ [vxHl), 

and a and J.! are the conductivity and magnetic 
susceptibility of the liquid. 

In the case of a liquid of infinite conductivity, 
which we shall consider first, it follows from the 
last equation that 

E =- J:_ [v x II]. 
c 

(3) 

If the current j 0 is sufficiently small, then 
we can linearize the set of equations (1). In such 
a case, we obtain the following equation for the 
determination of the velocity of the liquid v: 

a•v S2 d d. 7fi2- gra JV v (4) 

- t curl curl [v X v.J X v.J = -~;[ Hox ~]. 

where Po is the equilibrium liquid density, S the 
velocity of sound, and V0 = ..J J.!l 41Tp0 H0 the Alfven 
velocity. 

The variable magnetic field h = H - H0 and the 
change in the density associated with the wave are 
determined by the equations: 

ah ap d" 0 aT=curl[vxH.), rt+Po JVV=. (5) 

By means of Eqs. (1) and (2), we can show that 
the increase in the total energy of the medium per 
unit time, including the kinetic energy, the energy 
of the sound waves, and the energy of the magnetic 
field is determined by the following formula: 

a I { P v• s•p• 11-H•} 11- I 
I = at j + + --zp;;- + --s;t dv = 0 j v .[H. x j0 ] dv. (6) 

The intensity of radiation of the hydromagnetic and 
magnetoacoustic waves is also determined by this 
equation. 

3. We shall look for v in the form of a Fourier 
integral 

v (r, t) = ~ v (k, w) eik·r-i"'t dkdw. 

Substituting this expression in (4), we get 

{w2 - (k·V0 )2} v- {(S2 + vg) k- (k·V0 ) V0 } (lw) (7) 

+ k(k-V0 ) (V0-v) = iw~ [H. x j0 ], 
CPo 

where Jo ( k, w ) is the Fourier component of the 
external current density 

j 0 (k, w) = (2<-t4 ~j0 (r, t)e-ik·r+i"'t drdt. 

Setting the determinant of (7), equal to zero, we 
obtain the dispersion equation for free waves in an 
ideally conducting medium in the presence of an 
external magnetic field: 

[w2 - (k.V0 ) 2J (w2 [w2 - (S2 + Vg) k2 ] + S2k2 (k-V0 ) 2 = 0. 
(8) 

This equation has three different solutions, cor­
responding to the three different types of waves 
that can be propagated in an ideally conducting, 
compressible liquid located in an external mag­
netic field. The squares of the phase velocities 
of the hydromagnetic and the two magnetoacoustic 
waves are respectively equal to 

ui = vg cos2 &, 

uL = 1/ 2 {(S2 + V~) + V(S2 + V~)2 - 4S2V~cos2 & }, 

where J- is the angle between the direction of 
wave propagation and the magnetic field H0. All 
three types of waves are excited in the medium in 
the general case in the presence of an external 
magnetic field. 

Starting out with v from (7) and using Eq. (6), 
we get the following general expression for the in­
tensity of radiation of the three types of waves per 
element of solid angle do: 

(9) 

where L. ( k, J-, cp ) is the Fourier component of 
the component of the current density in the plane 
perpendicular to the direction of the magnetic 
field H0; cp is the angle between two planes, one 
defined by j0 and H0, and the other by the direc­
tion of wave propagation and H0; w0 is the fre­
quency of the external current (we consider the 
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external current j 0 to be a harmonic function of 
the time). 

The first component in (9) determines the in­
tensity of excitation of hydromagnetic waves with 
phase velocity Ut. the second and third compo­
nents the intensities of excitation of the magneto­
acoustic waves with phase velocities u2 and ua. 

We note that only the excitation of hydromag­
netic waves is possible in an incompressible fluid, 
wherein the intensity of radiation is equal to 

w2V2 
1 

{ ) ,2 

dl = 8.-:5 {1- ~ ~- h ~' &, '? I dG. 
c"ul ' u, 

(10) 

4. Let us now consider several special cases. 
(a) Surface current. If the surface current 

jo = jso (z) e-lw,t' (11) 

exists in a plane perpendicular to the magnetic 
field H0, then only hydromagnetic waves will be 
propagated. These travel along the field. The 
total radiation intensity of these waves for a unit 
surface current is equal to 

ls=r={l-V0c-2 j~. (12) 

We note that the radiation intensity does not depend 
on the frequency of excitation of the current. 

(b) Line current. In this case, 
Jo = ho (x) o (z) e-iw,t' 

and the total intensity of radiation of the hydro­
magnetic waves per unit length is determined by 
the expression 

(13) 

The radiation intensity is proportional to the fre­
quency of the current. 

(c) Current loop. In this case, 

]. - 1. a (p -a) o (z) e-iw,t 
0- c 21tp ' 

and only the magnetoacoustic waves are excited. 
In such a case the radiation intensity is equal to 

(14) 

We can find the total intensity in two limiting 
special cases: if V~ » 82, then 

Here only the magnetoacoustic wave with phase 
velocity u2 is excited. The angular distribution 
of the radiation is determined from the formula 

0 

!l"'o .o 0 ( awo . ) die= -8 11 2 1cJi -v sm& do. 
7t oC \ o 

If the inequality aw0 /V0 « 1 is satisfied, the total 
radiation intensity becomes 

I c = ({l-a2wg / 12c2Vg) j~. (15) 

If v~ « s2' then 

Here only waves with the phase velocity u3 are 
excited. The angular distribution of the radiation 
of these waves is determined from the relation 

The total radiation intensity is equal to 

I _ !1"'~ ·2 I ( aw0 ) K ( aw0 ) 
c - 2czv o 1 c 1 V o 1 V o • 

If aw0 /V0 « 1, then 

lc = (11-wU4c2V0)j~. (16) 

5. We now consider the effect of finite conduc­
tivity and the viscosity of the fluid on the excita­
tion of hydromagnetic waves. Limiting ourselves 
for simplicity to the case of an incompressible 
fluid, we have the following system of equations 
for the velocity v and magnetic field h: 

iJv " (J. !1. H] -;,-t = v"Vv·v + -4- [curl h x H0]-- [j 0 x 0 , 
v 7tPo Cpo 

(17) 
iJh c2 c • ;,---=curl [v x H0]- -4- curl curl h +-curl J, 
vf 1t[J.O" [10" 

where v is the viscosity of the liquid. 
The radiation intensity can be found from the 

formula 

I=-~ E·j0dv, 

where the intensity of the electric field E is 
equal to 

[1 H c l h io E = --[vx ]-+--cur ---. c 0 ' 47tcr cr 

We can show that the intensity of the radiation of the hydromagnetic waves will be determined by the 
expression 

(18) 
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In a viscous liquid with finite conductivity, the 
harmonic current with frequency w0 [in contrast 
to (1)} excites hydromagnetic waves with different 
frequencies w = ku1• The spectral distribution of 
the hydromagnetic waves radiated is determined 
from (18). 

Making use of the formula 

'() ]' 1 "' o X = Jill 1t a2 + x2 , 

it is easy to show that for v - 0 and a- oo, 

Eq. (18) goes over into (10). 
6. We now compare the intensity of the excita­

tion of hydromagnetic waves by currents with the 
intensity of excitation of hydromagnetic waves by 
mechanical means, in which case, for a certain 
plane perpendicular to the magnetic field H0 ( the 
plane z = 0 ), the velocity of the liquid perpendicu­
lar to the magnetic field is given by 

Assuming v, h ~ exp { - iw0 ( t - z/V0 ) } , and 
taking the liquid to be incompressible, we get, by 
(3) and (5), 

E = - J:__ [ v x n ] , h - • / 47tPo c • .., --v-;Lv. (19) 

The energy flow is determined primarily by the 
flow of electromagnetic energy 

I= ;1tRe [Ex h*]. 

Substituting this expression in (19), we get 

(20) 

A comparison of (20) with Eq. (12) shows that 
the surface current js is equivalent to a velocity 

Vo = V27tfl. /Po is/ c 

from the viewpoint of the excitation of hydromag­
netic waves. 
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A new formulation of nonrelativistic quantum mechanics is proposed, namely a general defini­
tion of the probability of any event. The physical content of quantum mechanics is reduced to 
a single principle similar to the principle of Gibbs; this makes it possible to solve problems 
without resorting to the use of wave functions and operators. 

THE idea that there may exist in quantum mechan- with the weight assigned by Gibbs. In quantum me-
ics a general expression for the probability ampli- chanics the role of the configurations is played by 
tude of any event is due to Feynman.1 These am- the paths of the particle; according to Feynman's 
plitudes are multiplied and combined like classical idea the probabilities are replaced by amplitudes. 
probabilities; this leads to the idea of constructing A simple and complete "atomistic" description is 
quantum mechanics according to the model of clas- obtained (see Sec. 8). 
sical statistical physics. In statistical physics the This program has not, however, been completely 
probability of finding a system to have some given carried out. According to Feynman, the amplitude 
property is equal to the sum over all configurations of any state must be the sum over all paths con-
having this property; each configuration is used sistent with the conditions of the experiment, but, 


