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A study is made of the zero-angle scattering in collisions of quasiparticles in a Fermi liquid. 
It is ehown that the scattering amplitude for zero angle depends on the limit approached by the 
ratio of the momentum and energy transfers in the collision as both these quantities go to zero. 
It is ascertained which of these limits is connected with the interaction energy of the quasi­
particles that occurs in the general theory of the Fermi liquid developed earlier by the writer. 

A general theory of the Fermi liquid* has been 
developed in previous papers by the writer.1•2 One 
of the quantities that plays an important part in 
this theory in characterizing the properties of the 
liquid is the function f ( p, p') which determines 
the interaction energy of the quasiparticles, i.e., 
the variation of the energy € ( p ) of the quasi­
particles arising from a variation of their distri­
bution function: 

OS (p) = Spa• ~ f (p, p') on (p') d·t' (1) 

(where d = d3p/( 27T) 3; here and below we take 
li = 1 ). 

In reference 1 it was shown that the function 
f ( p, p') is related in a definite way to the scatter­
ing amplitude of the quasi -particles in the liquid 
for their mutual collisions. The formulation given 
in reference 1 for this connection is not, however, 
quite accurate, as will be shown in the present 
paper. 

We used below methods borrowed from quan­
tum field theory; as is well known, these methods 
have recently been used with success by various 
authors in the study of the properties of quantum 
many-particle systems. 

The main part in these methods is played by 
the Green's function G and the "vertex part" 
r. Let us recall the definitions and basic prop­
erties of these functions. 

The function G is defined as the average value 
in the ground state of the system of the chronologi­
cal product of two If; operators: 

(2) 

*To avoid misunderstanding we emphasize that we are con­
cerned not with simply a liquid composed of Fermi particles; 
it is also postulated that this liquid has an energy spectrum of 
the Fermi type, i.e., that it is not a superfluid. 
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The indices 1, 2 denote sets of values of the three 
coordinates and the time, and also of the spin in­
dex. As usual, we shall use below instead of the 
space-time representation (2) the Fourier expan­
sion of this function. The only components differ­
ent from zero are those with identical values of 
the two momenta and the two energies ( that is, of 
the wave vectors and frequencies): P 1 = P 2 = P; 
we denote by P the "four-momentum", i.e., the 
combination of the momentum p and the energy 
€. In respect to the spin indices (which we de­
note by Greek letters) the Fourier components 
Ga,B(P) = fGa,B(X1 -X2)e-iP(Xt-X2)d4 (X1 -X2) 
are proportional to Oa,B; we shall write 

G .. ~ (P) = G (P) o"~· (3) 

As is well known, the poles of the function G ( P ) 
give the energies of the quasiparticles (the elemen­
tary excitations). In accordance with this, for p 
close to the boundary momentum Po and € close 
to the boundary energy IJ., G ( P) has the form 

G (P)->- a . 
e- fl. - v (p - p0) + til (4) 

( 1J. is the chemical potential of the gas, and v is 
the speed of the quasiparticles at the Fermi bound­
ary). This expression has a pole at 

8 - fL = V (p- Po), (5) 

and the small constant o is introduced in the usual 
way to specify the rule for going around the singu­
larity in integrating; the sign of o agrees with the 
sign of € - IJ. (or, what is the same thing near the 
pole, with the sign of p -Po). The "renormaliza­
tion" factor a is positive and, as has been shown 
by Migdal, 3 is smaller than unity: 

a< 1. (6) 
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The vertex part r is defined by means of the 
four-particle average value 

<ll12a4 = <T Ch~2~;~;)). (7) 

The Fourier components of this function contain a 
part that is expressed in terms of functions G ( P) 
only, and a remainder that gives the definition of 
the Fourier component of the vertex part by the 
following formula: 

<P,.~,y8 (P1, P2; Pa, P 4) 

= (2,;)8 G (P1) G (P2) [o (P1- Pa) o (P2- P4) oahs 

- o (P1- P4) o (P2- Pa) oas o~y] (8) 

+ iG (P1) G (P2) G (P3 ) G (P4) 

xr "'~· ya (P1, P 2; P3 , P 4) (2,;)4 o (P1 + P 2 - Pa- P 4). 

Here the values of the arguments are connected by 
the relation 

(9) 

On interchange of the indices 1 and 2 ( or 3 and 4 ) 
the function (7) changes sign; thus it follows from 
the definition (8) that r has the symmetry prop­
erty: 

r"'~.y8 (P~o P 2; P 3 , P 4) = -f~a.yB{P2, P1; Pa, P 4). 
(10) 

In the formation of the vertex part intermediate 
states occur that correspond to different values of 
the total number of particles in the system: the 
unchanged number N and the numbers N ± 2. 
The latter arise from such arrangements of the 
lfJ operators in the T -product as, for example, 
lf;1lf;2lfJtlfJt; the former correspond to arrangements 
such as, for example, ljJ 1lfJilfJ2lfJt. In accordance 
with this the contributions to the function r connected 
with these intermediate states have different char­
acters in regard to their singularities. Namely, 
terms due to states that appear with the addition 
or removal of two particles have singularities 
with respect to the variables P 1 + P2 ; terms 
corresponding to intermediate states with un­
changed number of particles have singularities 
with respect to the variables Pt - P3 or P2 - P4. 

The probability of scattering of quasi -particles 
with the transition 

(11) 

is given in terms of the function r by the formula 

dW"'~.ya(PI, P 2 ; Pa, P4) 

= 2,; I a 2f <X~,y8 (Pl, P2; Pa:P 4) [2 a (sl + €2- Ea -s:4) (12) 

X n1n2(l- na)(l-n4) d-t1d't2d't3 

[where n1o n2, •••• are the values of the distribu­
tion function for P 1a, P 2{3, and so on, and a is 

the renormalization constant from Eq. (4)]. The 
sign of r is defined in such a way that it corre­
sponds to a positive scattering amplitude for re­
pulsion and a negative amplitude for attraction. 

Below we shall consider the function r for 
nearly equal values of the pairs of variables P to 

P 3 and P 2, P 4, i.e., we set P 3 = P 1 + K, P4 = 
P 2 - K with small K, and agree to write 

r (Pl, P2; PI+ K, P2- K) = r (PI P2; K). (13) 

In terms of the scattering process (11) this means 
that we are considering collisions of quasiparticles 
giving nearly "forward scattering." 

In the lowest order of perturbation theory con­
tributions to the function r ( P to P 2; K) are made 
by the diagrams shown in the figure (a, b, c). 

P, Q ~·!( 

~. 
a 

1 ft•H 

~. 
1!.-H I 2 • 
2 c 

The internal parts of these diagrams corre­
spond to the following propagation functions: 

(a) G (Q) G (PI+ P2- Q), (b) G (Q) G (K + Q), 

(c) G (Q) G (P1- P2+ K + Q), 

where Q is the intermediate four-momentum 
over which one integrates. With arbitrary P 1 

and P 2 there is .nothing to distinguish the value 
K = 0 for the functions (a) and (c), and for small 
K we can put K = 0. In the case (b), on the other 
hand, for K- 0 the poles of the two factors come 
together, so that diagrams of this type require 
special consideration. 

To calculate r one must sum the entire series 
of perturbation theory. Since in doing this our pur­
pose is to separate out the parts having a singular­
ity at K = 0, we must first single out the contri­
bution from all the diagrams that do not have any 
parallel pairs of lines with nearly equal (differing 
by K) values of the four-momentum. We denote 
by r(t) this part of the function r, which has no 
singularity at K = 0; in it we can simply put K = 0, 
so that r(1) will be a function of the variables P 1 
and P 2 only: r(t) = r(t)( Pto P 2 ). The entire series 
that has to be summed can be written symbolically 
in the form 



72 L. D. LANDAU 

where the colons replace pairs of lines in the dia­
gram with nearly equal values of the four-momen­
tum, and r 1 denotes the set of all possible dia­
gram elements that do not have such pairs. 

The problem of summing this series (so-called 
"ladder" summation) reduces to the solution of an 
integral equation, to obtain which we "multiply" the 
series (14) by rt> i.e., replace it by the series 

(: ri: r :) = (: ri: ri:) + (: ri: ri: ri :) + .... 
Comparison of this with Eq. (14) leads to the equa­
tion 

(: r :) - (: ri :) = (: ri: r :), 

which, when written out in explicit form, is the 
desired integral equation 

r,B,ya(PI, P2; K) = r~ILa(PI> P2) (15) 

- (2~J• ~ r~ILdPI, Q) o (Q) o (Q + K) r,~ .• a (Q, P2; K) d•Q 

(in the first factor of the integrand we should, 
strictly speaking, have Q + K instead of the 
argument Q; but in view of the absence of singu­
larities in r(t) we can here set K = 0). To in­
vestigate this equation we examine the product 
G ( Q) G ( Q + K) that occurs in the integrand. On 
substituting here G ( P) in the form (4) we get 

a 2 j[s-!L-v(q-p0 ) + ioi] (16) 

x [z + w -11- ·- v (I q + k i- p0) + io2]. 

Here E and q are the energy and momentum cor­
responding to the four-momentum Q, and E + w 
and q + k are those corresponding to Q + K. 

For small k and w the expression (16), as a 
function of E and q, behaves like 6 functions 
of the arguments E - J.l and q - p0; that is, it 
has the form 

A8(s-tL)o(q-p0), (17) 

where the coefficient A depends on the angle () 
between the vectors k and q. Comparing 
Eqs. (16) and (17), we see that this coefficient is 
given by the integral 

A=\ I a2dedq 
.) j [e- [1.-v(q- p0) + ilhJ [e+w- [1.-V (I q + k l-p0)+i8•]' 

(18) 

Let us first carry out the integration with re­
spect to dE. The result of the integration depends 
essentially on the value of q. If the two differ­
ences q - Po and I q + k I - Po have the same 
sign, then we must also assign like signs to the 
quantities 61 and 62• The poles of the integrand 
then lie in one half-plane of the complex variable 
E, and by closing the path of integration through 

the other half-plane we can see that the integral 
vanishes. Thus the integral is nonvanishing only 
for opposite signs of the differences q - Po and 
I q + k I -Po· Let us first suppose that qk > 0, 
i.e., cos () > 0. Then the integral is nonvanishing 
for q < p0, I q + k I > p0, which, because of the 
smallness of k, is equivalent to the condition 

Po- k cos 6 < q <Po· (19) 

In addition we must have for the quantities 6 that 
61 < 0, 62 > 0, so that the poles of the integrand 
lie in different half-planes. Closing the path of 
integration through one half-plane and calculating 
the integral from the residue at the corresponding 
pole, we find 

A _ 1 2rtia2dq 
- .) (>) - v (I q + k I - q) • 

Since by Eq. (19) q is nearly equal to Po and 
varies over a range k cos (), we can put I q + k I 
- q = k cos e, so that 

A _ 2rtia2k cos e 
- w-vkcos6 · 

Let us note the peculiar character of this ex­
pression: its limit for k- 0, w- 0 depends on 
the limit approached by the ratio w/k. 

It is easy to show in the same way that for 
cos () < 0 (in which case the integration must be 
taken over the region q >Po. I q + k I <Po) one 
gets the same expression for A ( e ) . Thus we 
have 

2rtia2 l•k 
G (Q) G (Q + K) = w _ u 1-ko (s -11-) o (q- p0 ) + g (Q), 

(20) 

where Zk has been written instead of k cos e 
( l is the unit vector in the direction of q), and 
g ( Q) does not contain any 6 -function part (for 
small K ), so that in it we can put K = 0. 

Substituting Eq. (20) into Eq. (15), we get the 
fundamental integral equation in the form 

r ,~,ya (PI, P2; K) = f~1La (PI, P2) 

- -(2~J• ~ r~~2. yl; (PI, Q) g (Q) r,B,•6 (Q, P2; K) d•Q (21) 

2 2 • 

+ (~~~ ~ r~L:;(P1,Q) r~;B .• a (Q, P2, K) w ~~\ 1:kdo. 

In the last term we have put d4Q = q2 dq do dE, 
where do is an element of solig angle in the 
direction of l, and have carried out the inte­
gration of the 6 functions in the integrand with 
respect to dq dE. In the arguments of the functions 
r(t) and r in this term Q is taken on the Fermi 
surface, i.e., it consists of the momentum q = p0l 
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and the constant energy J.1.. 
Because of the special character of the kernel 

of the integral equation as noted above, its solution 
also has just the same character: the limit of the 
function r(P1, P 2; K) for K- 0 depends on the 
way in which k and w go to zero, i.e., on the 
limit of the ratio w/k. 

Let us denote by rw ( Pt> P 2 ) the limit 

r:~.ys(P1 , P 2) = limfa~.ys(P1 , P 2 ; K) for kjw-+0 
K->o (22) 

[we shall see below that it is just this quantity 
with which the function f ( p, p') of Eq. (1) is 
related]. With this way of approaching the limit 
the kernel of the last term in Eq. (21) goes to 
zero, so that rw satisfies the equation 

r:~.ys (Pr. P2) =r~LdPr, P2) (23) 

- (2~). ~ r~1LdPr. Q) g ( Q) rr~ . • a(Q, P2) d4Q. 

We can eliminate r(t) from (21) and (23). The 
result of the elimination is 

a2p2 \ lk + (21t~3 Jr~ •. ydPr. Q)r~B .• s(Q,P2;K),_vlk do. 

In fact, if we formally write Eq. (23) in the form 

r~J. y8 (Pr. P2) = Lr:~. y8 (Pr. P2), (25) 

then Eq. (21) is written 

LX a~,y8 (P1 , P2; K) = r:1J . .,.s (P1, P2) 

a2p~ \ (I) • lk . + (27t)3 la<,ydP1 , Q)f~~ .• s(Q, P2, K) w-vlk do, 

and substituting Eq. (25) and then applying the 
operator L -l to both sides, we get Eq. (24). 

Let us now introduce the function rk defined 
by 

This function (multiplied by the renormalization 
constant a2 ) is the "forward" scattering ampli­
tude (i.e., that for the transition Pl> P 2 - Pl> P 2 ), 

corresponding to actual physical processes occur­
ring with quasi-particles on the Fermi surface: 
collisions leaving the quasiparticles on this sur­
face involve changes of momentum without change 
of energy, so that the passage to the limit of zero 
momentum transfer k must be made for energy 
transfer w strictly equal to zero. On the other 
hand the function rw introduced above corre­
sponds to the nonphysical limiting case of "scatter­
ing" with small energy transfer and momentum 
transfer strictly equal to zero. 

Setting w = 0 in·Eq. (24) going to the limit 
K- 0, and multiplying both sides of the equation 
by a2, we get 

a2r~~. ys (P1 , P2) = a2 r:~. ys (Pr. P2) (27) 
2 

-v(~:l" ~a2r: •. ydPr, Q)·a2r2~ .• s(Q, P2)do. 

Thus there exists a general relation connecting 
the two limiting forms of the forward scattering 
amplitude. 

Let us now turn to the study of the poles of 
r(Pt>P2; K) as function of K. As was already 
pointed out at the beginning of this paper, the poles 
with respect to the variable K = P 3 - P 1 are due 
to contributions to r associated with intermedi­
ate states in which the number of particles in the 
system is not changed. Therefore these poles cor­
respond to elementary excitations of the liquid 
without change of the number of quasiparticles in 
it. It is obvious that these are the excitations 
which can be described as sonic excitations in 
the gas of quasiparticles ( phonons of the "zeroth 
sound"). 

Near a pole of the function r (Ph P 2; K) the 
left side and the integral on the right side of the 
equation (24) are arbitrarily large; the term 
rw (Ph P 2 ), on the other hand, remains finite 
and therefore can be dropped. We note further 
that the variables P 2 and also the indices {3 and 
o are not affected by the operations applied to the 
function r in Eq. (24), i.e., they here play the 
role of parameters. Finally, we shall consider r 
close to the Fermi surface, i.e., we shall consider 
the energy of the quasiparticle, which is one of the 
variables Pl> to be equal to J.l., and the momen­
tum to be equal to p0, so that we write it in the 
form p0n, where n is a variable unit vector. 
Keeping all this in mind, we conclude that the de­
termination of the sonic excitations in the liquid 
reduces to the problem of the eigenvalues of the 
integral equation 

a2p2 (' lk 
X a.,. (n) = (21t)~ J r~ •. y~ (n,l) X~· (I)"'_ vlk do, (28) 

where Xay ( n) is an auxiliary function. 
We transform this equation, introducing instead 

of X a new function, by the substitution 

nk 
Yay (n)= · "'_ vnk Xay (n). (29) 

Then Eq. (28) takes the form 

p~a• (' 
(w- vnk) Va.y (n) = (k·n) (27t)" J r~e.yi; (n,l) v~. (I) do. (30) 

This equation agrees precisely in form with 
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equation (11) found in reference 2 for the distri­
bution function v in the zeroth sound, and more­
over a comparison of the two equations (using 
the definition of F by Eq. (6) of reference 2) 
leads to the following correspondence between 
the function f(p, p')* and the function rw: 

f-x~.y8 (n,J) = a2[:~.y8 (n,J) (31) 

This is the desired relation between f and the 
properties of the scattering of the quasiparticles. 
For clarity we point out that the four spin indices 
on this function correspond to the fact that f(p,p'), 
or more explicitly f(p,a; p', a'), depends on the 
spin operators (two-row matrices) a and a' of 
the two particles; thus to the two particles ( mo­
menta PQil and p0l) there correspond the pairs 
of indices a, y and {3, o ( in the function 
Ta{3,yo(PtoP2; P 3,P4 ) these pairs correspond 
to the pairs of nearly equal four-momenta Pt> P 3 

and P 2,P4 ). 

Having thus found the connection of the function 
f with the properties of the scattering of the quasi­
particles, let us return to the formula (27) and ob­
tain with its aid explicit relations between the 
function f and the "physical" amplitude for zero­
angle scattering on the Fermi surface, which we 
write in the form 

A (n1oa1; n2,a2) = a2fh (n1oa1; n2,a2). (32) 

On the Fermi surface the relation (27) takes 
the form 

(33) 

- 4~ ~Sp.,· ~ f (nio a1; n', a') A (n', a'; n2, a2) do' 

(where dT/dE = 47rpVv(27T) 3 ). The scalar func­
tions A and f depend on all scalar combinations 
of the four vectors n1o n2, O'to a2• If, however, 
the interaction between the particles is an excl}.ange 
interaction, then the only admissible scalar prod­
ucts are n1n2 and a 1a2• Then we can expand A 
and f as functions of cos e in terms of Legendre 
polynomials: 

A (cos 6) = ~ AzPz (cos 6), f (cos 6) = ~ fzPz (cos 6). 

l l (34) 

*In references 1 and 2 we did not write the spin indices ex­
plicitly. 

Substituting this into Eq. (33) and performing the 
integration with respect to do', we get 

Az (aio a2) = fz (ala2)- 21! 1 ~: Sp.,• fz (ala') Az (a'a2)· 

(35) 

In the case of an exchange interaction the spin 
dependence of the function reduces to a term pro­
portional to a1a2 (cf. reference 1 *), so that 

(36) 

where cp z, 1/Jz do not depend on the spins. Corre­
sponding to this we also set 

(37) 

Substituting Eqs. (36) and (37) into Eq. (35), we 
get without difficulty 

2 d-r 
Bz = cpz- 21 + 1 d€ Bzcpz, (38) 

1 d-r: 
Cz = ~Jlz- 2 (21 +1) de CI~Jlz. 

These formulas give a simple algebraic connection 
between the coefficients of the expansions of f and 
A in spherical harmonics. We note that only terms 
of the same l are related to each other, and that 
B is related only to the cp' s and C only to the 
1/J'S. 

In conclusion, I would like to thank A. B. Migdal, 
who called my attention to the dependence of the 
forward scattering amplitude on the ratio w/k, 
and also E. M. Lifshitz and L. P. Gor'kov for a 
discussion of this work. 
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*We take occasion to correct a mistake which got into refer­
ence 1: Equation ('Zl) should be 

1/x = ~-2 {41t2k2f3a. + ~o }. 


