LETTERS TO

THE QUESTION OF THE SYMMETRY OF
THE MANY-ELECTRON SCHRODINGER
WAVE FUNCTION

E. D. TRIFONOV
Leningrad State University
Submitted to JETP editor March 4, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1643-1644
(June, 1958)

WE consider the Schrddinger equation for a many-
electron system. We assume that the Hamiltonian
in this equation does not contain spin operators.
Because of the equivalence of the electrons, the
Hamiltonian is invariant under the symmetric
group of interchanges of the spatial coordinates

of the electrons. According to Wigner’s theorem,
the eigenfunctions belonging to each eigenvalue of
the energy will then form the basis for one of the
irreducible representations of the symmetric
group. If we assume that the system is in a state
with definite spin S, then the only allowed energy
eigenvalues are those which correspond to the defi-
nite irreducible representation given by a Young
scheme of two columns containing respectively A
and A, cells,! where

M >hgy MRy =n, A —A =2S.

1)

This gives the connection between the energy val-
ues and the value of the spin, although, as we men-
tioned, the Hamiltonian of our system does not con-
tain spin operators.

The symmetry properties of the many-electron
coordinate function necessary and sufficient to
make this function an element of the subspace
transforming according to a definite irreducible
representation {AA,} are conveniently illustrated
with the help of the corresponding Young scheme.
We write into the cells of the Young scheme the
position numbers of the arguments, e.g., in their
natural order (cf. figure).

-
1 Al

2 a2

Then one can so choose the basis functions of the
subspace transforming according to the irreducible
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representation {AA,}, that each of them is anti-
symmetric with respect to the interchange of the
arguments whose numbers lie in either of the col-
umns of the Young scheme; one can also choose
them such that each of the functions is symmetric
with respect to the interchange of the arguments
whose numbers lie in each of the rows of the Young
scheme. These properties we shall call properties
A.

There exists, however, another set of conditions,
the three Fock conditions,? which are equivalent to
the conditions A, as we shall show. The Fock con-
ditions, which we shall call conditions B for brev-
ity, consist in the requirement that the function be
antisymmetric with respect to two groups of k
and n — k arguments (two conditions), and in
the requirement of cyclic symmetry. Moreover,

n—k>k (n—k)y—k=2S. (2)
Comparing (1) and (2), we see that A{ =n -k,
A, = k, and that, of course, the first two of the
conditions B coincide with the first half of con-
dition A. The requirement of cyclic symmetry
may be interpreted as the impossibility of anti-
symmetrizing the function in more than n — k
arguments.

We proceed to the systematic proof of the equi-
valence of conditions A and B. We shall make
use of a group-theoretical method based on the
material of chapters IV and V of Murnaghan’s
book.?

We consider the space of the functions subject
to the first two of conditions B. We denote it by
the symbol (AqA,). This space is subdivided into
several subspaces transforming according to the
irreducible representations of the symmetric group.
Among these will certainly be the irreducible rep-
resentation {AA,}, as well as some representa-
tions {A{A;} with A] >2;, but there will be no
representation {X{X5} with Xj < 2.

We now impose the requirement of cyclic sym-
metry on the functions of space (AA;). Evidently,
the functions of the subspace transforming accord-
ing to {AA4} do not satisfy this requirement,
since they can, according to property A, be anti-
symmetrized in more than A; arguments. Of the
whole space (AjA;) there remains only one sub-
space, transforming according to {AA,}, whose
functions satisfy the requirement of spherical sym-
metry.* Indeed, the subspace transforming accord-
ing to {xlxz } is not contained in the spaces
(AA3), and hence cannot, according to the reci-
procity theorem of Frobenius, be antisymmetric
in more than A; arguments.
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Thus the three Fock conditions are necessary
and sufficient for the functions satisfying these
conditions to belong to the subspace transforming
according to the irreducible representation of the
symmetric group of interchanges of their argu-
ments.

In closing I want to express my sincere gratitude
to M. I. Petrashen’ for a discussion of this paper.
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THE classification of the elementary particles ad-
mits the existence of a meson with strangeness 0

and isotopic spin 0 ( see, e.g., the review by Okun’! ).

Such an hypothesis has been advanced repeatedly.?>®
Evidently such a meson (let us call it p) must be
neutral and interact strongly with nuclei; in par-
ticular, it may be produced singly in collisions of
two nucleons.

We assume that the p meson differs from the
neutral pion only in mass and isotopic spin, but
that the space spin and parity of the p meson are
the same as for the neutral pion (pseudoscalar).
Let the p meson be equivalent to a nucieon-anti-
nucleon pair in the state 05 1So, whereas the neu-
tral pion is equivalent to a pair in the state 15 1SO,
T, = 0 according to the classification of Bethe and
Hamilton* (see also reference 5). These two pair
states differ by the relative phase PP and NN.
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In this letter we consider the possible decay
modes of the p meson and the method of observ-
ing it in an experiment. It is obvious that the mass
of the p meson is greater than that of the neutral
pion; otherwise the p meson would have been dis-
covered in experiments on neutral pion production.
The transformations p — 27° and p — o+
are not possible as they would not conserve parity:
two pions in a state with L = 0 are an even system,
whereas the p meson is odd.

By applying the operator CT (C is charge con-
jugation, i.e., conversion of particles into antipar-
ticles; T is charge symmetry, i.e., conversion of
protons into neutrons). Bethe and Hamilton have
shown that three-pion annihilation cannot occur in
a 05 state. Hence the decay modes p — 31" and
p— 7" + 7~ + 7" are forbidden. This applies to
any odd number of pions.

To treat the decay into four pions, we separate
them into two pairs and denote the isotopic spin of
the first pair by ty, its orbital angular momentum
by l;, the corresponding quantities of the second
pair by t, and /, and the angular momentum of
the center of mass of the first pair relative to the
other by L. From the assumption that the p me-
son is pseudoscalar and has T =0, it follows that
ty=ty, |L|=|lj+1,|, and that L +1; +1; is odd.
If t; is even, then I; and I, are even; if t; is
odd, then I, and [, are also odd.

If l;=1,, then both pairs can be regarded as
identical bosons, and the wave function must be
symmetric with respect to their exchange.

The lowest values of the momenta that satisfy
all these conditions are l;=1,=2, L=1, t =
tg=0, or ty=t,=2.

For ly=1,, sucha stateis l;=1, [,=3,

L =3, and t; =t,=1. The need for large orbital
momenta can reduce substantially the probability
of the p — 4m decay.

The decay p — 70 + v is forbidden, since radi-
ative 0 —0 transitions are forbidden. The decay
p— 7t + 77 + v is allowed, if the pion pair is in
a state with L = 1. Also allowed is the decay
p — 2y, which is analogous to the decay 70— 2y.
If mp >2mqg, one can expect the single photon
decay to be more probable.

The expected time of decay is 10718 to 10
sec.

It will be extremely difficult to identify the de=
cay p— T+ v in the presence of photon
background from the 7°— 2y decay.

We propose below a method for detecting events
of single production of p mesons in interactions
of charged particles by energy-momentum balance.
Consider the reaction p; + pp — p3 + py + p, where
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