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In the table a comparison is given between the 
theoretical values of the excitation energies of the 
first and second rotational-vibrational bands of ex
cited states of odd nuclei and experimental data. 
There the values of the parameters nt.;0 and o, 
used in the calculation of theoretical values, are 
also given. 

Comparing the spectrum of collective excitations 
of odd nuclei with the spectrum of collective exci
tation of even-even nuclei, it is possible to draw 
the following conclusions: (1) The break-up of col
lective excitations into a system of rotational
vibrational bands in odd nuclei sets in for lower 
values of o than in even-even nuclei; (2) The 
values of the parameter w0, which can be called 
the frequency of vibration of the nuclear surface, 
in the ground state is smaller in odd nuclei than 
in even-even nuclei having the same value of the 
parameter o. 

For o > 3 the quantity v takes on values near 
to integral ones 0, 1, 2, .... ; further, according to 
Eq. (l.lla) one can approximately set 

~ = I + g [J (J + I)- K (K + I) I I 3o4 • 

Then Eq. (1.18) can be replaced by the approximate 
equality 

eftiw0 = (v + 1/ 2) + [J (J +I)- K (K +I)] j6o2 

-a[J(J+I)-K(K+I)J2/o6 • (2.1) 
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The form of the distribution function of a system of electrons is studied in the Hartree approxi
mation near the Fermi surface, for the case of a weakly inhomogeneous distribution. It is 
shown that in this region the inhomogeneity has a particularly strong effect, so that the cor
rect expression for the distribution function, as given in this paper, is decidedly different in 
this region from the expression usually employed (that calculated from the Thomas-Fermi 
model). It is pointed out that the latter expression is completely unsuitable for use in prob
lems in which the neighborhood of the Fermi surface plays an important part. 

As is well known, the distribution function (the 
density matrix in a mixed representation) is the 
most important quantity characterizing a many-

particle system. By means of it one can calculate 
without difficulty quite a number of physical quan
tities for the system in question. 
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In the present note we study in the Hartree ap
proximation the form of the distribution function 
in the region of phase space near the Fermi sur
face. Our specific problem is that of a system of 
nonrelativistic electrons in a stationary state at 
temperature zero, and we confine ourselves to the 
case in which the occupation numbers of the levels 
depend only on the energy. 

If our system is characterized by a sufficiently 
smooth distribution of the density and potential en
ergy, namely if the condition for quasi-classical 
behavior, 

~=I \7 (p~) I I P~ ~ I, (1) 

is satisfied, then it is common practice to use for 
the distribution function the following expression, 
which corresponds to the Thomas-Fermi model:* 

f (r, p) = 2 (2nt3 6 (p2 - p~ (r)), (2) 

6 (x) = 1ldl -xI I x [). 

Here Po is the Fermi limiting momentum, related 
to the sum <I> ( r) of the potentials of the external 
and self-consistent fields and the limiting energy 
E0 by· the equation p~ ( r) = 2 ( E0 - .P ( r )). We use 
throughout atomic units with e = ti = M = 1. 

It will be shown below (cf. also reference 1) 
that near the Fermi surface, namely for 

I P -Poi - Vf Po, 

the expression (2) is not a useful one even when 
Eq. (1) holds, since in this region effects of the 
inhomogeneity of p~ become very pronounced. 
It turns out to be possible to find an expression 
for f which is acceptable also in the region (3). 

(3) 

It is convenient to start from the operator ex
pression for f in the Hartree approximation1•2 

f (r, p) = (27tt32 (6 (p 2 - p~ (r)))P, (4) 

where for an arbitrary operator a 
(a)p = exp (- ipr) a exp (i pr). 

Apart from an unimportant factor the argument of 
the function e is equal to the quantity H - Eo. 
where H = p2/2 + .P ( r) is the Hamiltonian. Ex
pression (4) thus corresponds to a step-function 
distribution in the energy space; it is clear, how
ever, that in the phase space this distribution must 
inevitably be smeared out because of the fact that 
the coordinates and momentum do not commute with 
the Hamiltonian. This fact is displayed formally in 
the failure to commute of the operators p and p~ 

*The factor 2 in this formula corresponds to the two orj.enta
tions of the spin. 

in the argument of the e function in Eq. (4). If 
we denote by Kn the corresponding n-th order 
commutator, then we have for small ~, in order 
of magnitude* 

On the other hand, the quasi -classical value of the 
argument of the e function, corresponding to com
plete neglect of the commutators, is given by p2 -

p~. From this it follows that the ratios 

(5) 

are dimensionless parameters that determine the 
part played by the commutators of various orders, 
and thus also determine the importance of the in
homogeneity. 

If the phase point lies far enough from the Fermi 
surface so that I p2 - pijl "'pij, then for small ~ 
we have Kn"' ~n. and we actually arrive at Eq. (2). 
Near the Fermi surface, however, Kn increases 
because of the decrease of the denominator, and 
the inhomogeneities begin to play a decisive role. 

To find the region of phase space in which the 
commutators must not be neglected, it suffices to 
equate Kn to a quantity of the order unity. Then 
the difference p2 - p~ defining the size of this re
gion will be equal to the largest of the quantities 

I< Kn\ 11/(n+l)- p~~n/(n+I>, n = I ·+- 00. 

For small ~ we must take n = 1, which at once 
leads to the estimate (3). 

The next question is to find out the relative im
portance of commutators of different orders. The 
answer is provided by the values of the ratios 

(6) 

In the region (3) in which we are interested these 
ratios are of the order ~(n-l)/2 and vanish for 
~- 0, which shows that only the first commuta
tor needs to be taken into account. The region in 
which other commutators also become important 
is considerably narrower: 

I P- Po J ~~Po· 

The contribution of this region is usually small 
because of its small width. 

(7) 

It must be noted that the behavior of the distri
bution function just at the Fermi surface has been 
studied by Migdal. 3 There, moreover, the inter
actions between the particles were taken into ac
count exactly, but only an isolated system was con
sidered, without any external field. 

*A characteristic value of the momentum is a quantity of the 
order of Po• 
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Proceeding to a quantitative study of the situa
tion in the region (3), we note that the function of 
noncommuting arguments appearing in Eq. (4), 

00 

'2 i(dl ' 
6(p2-Po)= 2rc J t+io exp[it(p2-p~)] (8) 

-oo 

can be given a meaning by means of the relations1•2 

(9) 

= exp [it (p2- p~)] (F (t2K1 , ••• t"+IKn . .. );p, 

where F is a certain function of the commutators 
of the operators tp2 and tp~, which reduces to 
unity when the latter commute. According to the 
estimates given above, which are immediately con
firmed if one makes the replacement t- tlp2 -p~l- 1 

in Eqs. (8) and (9), in the region (3) we can neglect 
all the commutators except the first. This makes 
it possible to use a well known formula of Glauber4 

which takes account of the first commutator and 
all its powers* 

(F)P = (exp(t2K1 12);P=exp{-it2pv(p~)}. (10) 

Here we neglect quantities of higher order in g. 
Substituting Eqs. (8) to (10) into Eq. (4), we get 

f (r, p) = (21tt3 {I -(I -is) (C (x) +isS (x))}, 
' (11) 

s = p V' (p~) liP V' (p~) I' X - (P2 - p~) I 2 I p V' (p~) 11'. 

C and S are the Fresnel integrals. 
For reference we present the general formula, 

which may be useful in the nondegenerate case: 

00 

(<p(p2-p~)ip= 1-v;~s ~ eist'<p[(p2-p~)(l +tlx)]dt, 
-00 (12) 

where cp is an arbitrary function. 
We also give the expression (11) in a form av

eraged over the directions of p 

f (r, p) = (27tta 2 [ 6 (p2-p~)x + 1-;- XJ. 
X= (I+ 2y2) S (y) +(I -2y2) C (y) 

(13) 

+ V! y(cosy2 + siny2), 

Y =I P2 - P~ I I 2 (pi v (p~) IY'·· 
For y » 1 we get the required value x = 1, but 
for y ""' 1,. i.e., in the region 3, the expressions 

*At points where the first commutator vanishes, the main 
role will be played by commutators of higher order. Nevertheless 
this fact is unimportant, since ordinarily we are interested in in
tegral expressions, to which these points contribute very little. 

(11) and (13) are decidedly different from Eq. (2). 
In particular, for small y we have x = 2 ( 2/rr)1f2y. 
The distribution obtained is qualitatively similar 
to the curve corresponding to the nondegenerate 
case with the effective temperature 

V-2 
kT eff ~ ~Po· 

From this it follows in particular that in the non
degenerate case the effect in question is unimpor
tant for T » T eff· We emphasize once again that 
Eqs. (11) to (13) apply only in the region in which 
I P -Po 1/g- oo for g- 0. 

From what has been said above it follows that 
if a quantity with which we are concerned and which 
relates to a system of particles is expressed in 
terms of an integral of the function f over a suffi
ciently wide region of the phase space, I p - Po I ...... 
p0, then it is permissible to use Eq. (2) if the con
dition (1) holds. 

In a number of problems of many-body theory, 
however, the decisive part is played by the neigh
borhood of the Fermi surface, with the width of 
this region determined by the distribution smeared 
out by the inhomogeneity, as discussed above. In 
this region, where I p - Po I ...... g 1/2 Po, it is nec:es
sary to use Eqs. (11) to (13). This is the case, for 
example, in the problem of calculating exchange 
and correlation effects, which will be dealt with 
in special papers. 

Finally, if for any reason the decisive role is 
played by a still narrower neighborhood of the 
Fermi surface, with I p -Po I ...... gp0, the problem 
becomes much more complicated, and it is evi
dently impossible to give a closed expression for 
f in this case. 

In conclusion I thank V. L. Ginzburg for anum
ber of helpful remarks, and A. B. Migdal, who kindly 
made the results of his work available to me before 
their publication. 
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