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The relaxation time resulting from the interaction of spin waves with each other, in ferromag­
netic dielectrics, is calculated. 

THE present paper is concerned with those relaxa­
tion processes, in ferro magnets, that result from 
the interaction of spin waves with each other. In 
contrast to the work of Akhiezer, 1 the treatment is 
carried through without any assumption about the 
nominal magnetization of the ferromagnetic in its 
ground state. 

Rela."'<ation processes in a ferromagnetic are not 
limited to interactions within the spin system; spin 
waves also interact with lattice vibrations. How­
ever, as will be shown below, there are a number 
of cases in which interactions between spin waves 
play the fundamental role in the establishment of 
equilibrium. 

1. THE ENERGY SPECTRUM OF A FERROMAGNET 

As was shown by Herring and Kittel, 2 the energy 
spectrum of a ferromagnet in the neighborhood of 
the ground state can be obtained without assuming 
a model for the spin structure of the ground state. 
Instead, purely phenomenological assumptions are 
made in regard to the existence of exchange inter­
action with a positive exchange integral and, con­
sequently, the presence of a spontaneous magnetic 
moment at T = 0. 

In order to study kinetic processes in ferromag­
netics, it is necessary to know not only the energy 
spectrum, which determines all the thermodynamic 
quantities3 but also the wave functions of the spin 
waves; it is by means of these that the probabilities 
of transition between different states of the system 
are calculated. Therefore we shall here use a sys­
tematic quantum-mechanical method to find the en­
ergy levels related to the motion of the magnetic 
moment in a ferromagnetic. We shall take account 
both of the large exchange interaction and of the 
small relativistic contribution (the anisotropy en­
ergy and the magnetic interaction). At very low 
temperatures, as was shown in reference 3, the 

magnetic interaction plays an essential role in the 
spectrum. 

We shall start with the Hamiltonian 

+ ~~ ~~~· [M (r) M (r') R2 - 3 (RM (r)) (RM (r'))J, 
(1) 

where the first term in curly brackets describes 
the interaction of the magnetic moment of unit vol­
ume, M = M ( r), * with a constant magnetic field 
H0; H0 coincides with the external magnetic field 
if the demagnetizing factor is negligible. The sec­
ond term is the anisotropy energy; MJ. is the pro­
jection of the magnetic moment on a plane perpen­
dicular to the axis of easiest magnetization, and {3 
is the magnetic anisotropy constant at T = 0. t The 
third term describes an isotropic exchange inter­
action; the quantities aik are the constants of this 
interaction, and in order of magnitude they are 
equal to ®ca2/J.tM0, where a is the lattice con­
stant and J.! the Bohr magneton. 5 

The second term in (1) (the double integral) 
describes the magnetic interaction; R = r - r'. 

The integra1!ion extends over all space (the 
ferromagnet is assumed to be infinite). 

Let the magnetic field H0 be directed at angle 
cp to the axis of easiest magnetization. Then the 
magnetic moment in the ground state, M 0 , makes 
some angle 1/J with the axis of easiest magnetiza­
tion. The-angle 1/J is determined by the condition 

*M(r) is the magnetic moment density. The total magnetic 
moment of the ferromagnetic is ~ = fM(r)dv. 

tThe form of the anisotropy energy that we have chosen is 
correct for small angles of inclination of the magnetic moment 
to the axis of easiest magnetization. 4 In the general case the 
anisotropy energy is a complicated function of Mx, My, and 
Mz• As will be clear from what follows, spin waves can always 
be introduced in the manner described here. 
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that the magnetic energy in the ground state be a 
minimum: 

sin(rp-4) = (~i\lf0 /2H0)sin24. (2) 

We note that in the ground state ( M = const.) 
the magnetic interaction energy is equal to zero.* 

We choose a system of coordinates in the follow­
ing manner: with the z axis along the direction of 
the magnetic moment M 0 , and with the x axis in 
the plane of the vectors M0 and H0 . Then the 
anisotropy energy JCA has the form 

:YtA = ~ dv (Mx cos 4 + Mz sin 4)2 + M!). (3) 

As regards the other terms in the Hamiltonian (1), 
their form, by virtue of invariance, is independent 
of the choice of the coordinate system. 

In quantum theory, the projections of the mag­
netic moment must be treated as operators with 
the commutation rules 

llr (r) 1W (r')- M+ (r') M- (r) = 2glulfl; (r- r'), (4) 

where 

(5) 

and where g is the gyromagnetic ratio ( g > 0 ) . 
The commutation rule for the components of M ( r) 
follows from the commutation rule for the compo­
nents of the total moment, 

Wlx9Jly - 9Jly9Jlx = - igh9Jlz. 

Following Holstein and Primakoff, 6 we introduce 
operators a ( r) and a* ( r) that satisfy the com­
mutation rule 

a (r) a· (r')- a• (r') a (r) =a (r- r'), (6) 

and we express in terms of them the operators M+, 
M-, and Mz: 

M+ = (2gltM0 )'1•a* (I - gtw"aj2M0 )'1•, 

lvr = (2gltM0 )'1· (I- g1w*aj2M0 )'l•a, 

Mz = M 0 - gha"a. 
(7) 

In the neighborhood of the ground state, Mz >::! M0, 

and Mx and My are much smaller than M0• We 
may therefore treat the operators a and a* as 
small and expand the integrand in the Hamiltonian 
(1) in powers of a and a*. For finding the spec­
trum, we may limit ourselves to terms of the sec­
ond order in a and a* (the first-order terms 

*The Hamiltonian ( 1) takes no account of the dependence of 
the magnitude of the magnetic moment in the ground state upon 
the magnetic field. This is legitimate up to fields of order 
sal fl - 10", where sa is the energy of an electron in the atom 
( € a - 10-12 erg). 

drop out by virtue of the choice of the ground state). 
After simple transformations we get JC = JC0 + 

JC' , where JC' contains the terms of third and 
higher orders in a and a*, and where 

:7t0 = (a*Aa) + 1/ 2 (aBa) + 1/ 2 (a*B*a*). (8) 

In the expression (8), the parentheses denote inte­
gration over the volume of the ferromagnetic, and 
the operators A and B are defined by the equa­
tions. 

Aa (r)-= [ gttH0 cos (rp- 4) + + ~gltM0 (cos 24 + cos2 4) J a (r) 

M a2a(r) M \ dv' ( 3 R+R- R2 ) ( ') - glt oaik ax,ax" - glt o ~IF' \-2· - a r . 

' 1 (9) 
Ba (r) = -2 ~gltM0 (cos2 4 -1) a (r) 

-+ gltM0 ~ ~: (R"'Y a (r'). 

The finding of the spectrum is related, as is 
well known, to the diagonalization of the Hamilton­
ian (8). For this purpose it is convenient to go over 
to the equations of motion of the operators a: 7 ,B 

a= (i /1t) (:Ytoa- a:fto)· (10) 

By use of (8) and (6), we get from (10) 

a=- (i /1t)(Aa + I1·a·). (11) 

Since Eqs. (11) are linear, and since the operators 
A and B have difference-dependent kernels, we 
may seek a solution of (11) in the form of a Fourier 
series 

a(r, t) = ~ (u~.(r)aA (t) + v; (r) a; (t)), (12) 
A 

where 

(13) 

and the operators a A. and a{ satisfy the commu­
tation rules 

(14) 

On substituting (12) in (11) and comparing coeffi­
cients of aA. and a{, we get 

Here 

A~.= gltf/0 cos (rp- 4) + 1/2 ~gti.M0 (cos 24 + cos2 4) 

+ g1tM0iXtjk!.i k~.i+ 2rrg1tM0 (k~x + k~y)fk~; (16) 

B~. = - 1/2 ~gltM0 sin2 4 + 2rrgltM0 (k!.x + ik~.u) 2 / kr 
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From Eqs. (15) we find 

SA = v A~ -I BA )2 • (17) 

The homogeneous equations (15) determine the 
values of u:x and v:x except for an arbitrary fac­
tor, whose value may be obtained from the normali­
zation condition 

(18) 

where V is the volume of the ferromagnet. Con­
dition (18) guarantees conformity to the commuta­
tion rules (14) and (6); it can be obtained by using 
the orthogonality relation for the solutions of the 
system (15): 

~ ( uA(r) u~ (r)- v~. (r) v~ (r)) dv = 0, (f. =F !J.), 

~ ( u~. (r) u[l. (r) - u~. (r) v., (r)} dv = o: 
From (15) and (18) we have, except for a phase 
factor, 

u~. = -- _1_. _;. 1 (A +• )'f, 
V2v- "1. ' 

(19) 

By use of the equations of motion (11), the Hamil­
tonian JCo can be put into the following form: 

9'to = (i1L/ 2) {(a*, a)- (i:z*, a)). (21) 

On substituting a and a* from the Fourier 
series (12), we get 

9't0 = ~ s~. (a;a~. + 1/2) + G; G = - 1/ 2 ~A,; 
A 1 

(22) 

G is a constant, which may always be omitted in 
the Hamiltonian. 

The quantities a~a:x, as is evident from (14) and 
(22), have the meaning of occupancy numbers ( n:x) 
for spin waves. Thus 

(23) 

where E:X is determined by formulas (17) and (16). 
We consider the limiting cases: 
(1) Magnetic field H0 parallel to the axis of 

easiest magnetization. In this case cp = 1/J = 0; 

( e:x and CfJ:X are the polar angles of the vector 
k:x): If .we treat O:'ij as an isotropic tensor, O:'ij 
= O:'Oij• we arriv~ at the well known spectrum.2 

Here the quantity {3M0 plays the role of a magnetic 
anisotropy field. However, in the general case ( H0 
not parallel to the axis of easiest magn~tization ), 

the magnetic anisotropy density cannot be expressed 
in the form - MHA, since the constant f3 enters 
in a different way in the expression for A:x and B 
[ cf. (16)]. 

(2) For large k:x ( O:'ijk:Xik:Xj » 1), * A:x » I B:x I, 
and 

S;>. =A~.= g1LH0 + gt.M01X;jkuki.j. (25) 

(We recall that f3 ,...., 1.) 

(3) For small k:x ( O:'ijk:Xik:Xj « 1 ), A:x and B:x 
are of the same order of magnitude. In this case 
the expressions for A:x and B:x do not simplify. 

2. INTERACTION OF SPIN WAVES WITH EACH 
OTHER 

In the processes of interaction of spin waves 
with each other, a fundamental role is played by 
the terms of third and fourth order with respect 
to the operators a and a*. The third-order 
terms arise from expansion of the anisotropic 
relativistic terms in the Hamiltonian (1) ( aniso­
tropy energy and magnetic interaction energy ) : 

( c.c. denotes the complex conjugate terms). 
The fourth-order terms arise from expansion 

of the e:kchange interaction energy 

- V' (a*a*a)V'a)dv. 
(26') 

(a) We consider first the terms of third order. 
Henceforth we shall suppose that the magnetic 

field is applied in the direction of the axis of easi­
est magnetization.t Therefore 1/J = 0, and 

+ c.c. (27) 

On substituting in (27) the expansion (12) of the op­
erators a and a*, we get 

*This corresponds. to a temperature T » 2rriLMo - 1 °K. 
tin the general case (t/J of 0), the terms related to the ani­

sotropic energy do not change the magnitude of the relaxation 
time to any essential degree, since the structure of the first 
term in (26) is similar to that of the second and since the coef­
ficient f3 - 1. 
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flt~ = ~ W).!ivaA 2!-'U: + C .C., 
i.p.v 

(28) 

where 

and where the sum extends over all wave vectors 
kA,, kJ.l, and kv satisfying the law of conservation 
of quasi-momentum 

.(30) 

We do not consider transfer processes, since they 
play no role in the problems being solved here. 

We may consider the Hamiltonian (28) as a per­
turbation that causes transitions between station­
ary states of the system of spin waves. 

The probability of transition (per second) is, 
as is well known, 

where X'a\ is the matrix element for a transition 
from the initial state ( i ) to the final state ( f), 
and Ei ( Ef) is the energy of the initial (final ) 
state. 

According to the commutation rule (14), the 
nonvanishing matrix elements of the operators 
aA. and ax are 

Therefore, according to (28), the nonvanishing 
matrix elements of the operator JC' are the 
following: 

(31) 

together with the matrix elements of the opposite 
transitions. 

The corresponding transition probabilities have 
the form: 

X o (s,- s!i + s.); (32) 
Wn,, nw n, 21t A ( + 1) ( + I) 

nJ_-1, n!i+l. n,+l = T Vt<AnA n!i n, 

Here 

(33) 

Using the expressions obtained for the transition 
probabilities, we write the collision integral for 
nv: 

(n,)~oll = -~"' ]{A,r<v[n,nl'-(nv+ 1) 
'At< 

+ A'Avr< [(n, + I) nt< (nv + I)- n, (nr< + 1) flv] o (s!.- s", + sv) 

+ Avt<d fl;>. ( nt< + I) ( n, + I) - ( flt.. + I) nt<nv j ll ( s~. - st< - s.)) . 

We shall calculate the mean relaxation time of 
a gas of spin waves with the processes under eon­
sideration taken into account. 

For small deviations of the system from the 
state of statistical equilibrium, the mean occupancy 
numbers nv can be expressed in the form 

n, = ne +!:ln., ne = I I (e"• 11 - 1), (35) 

where D.nv is a small correction to the Bose 
equilibrium distribution 

Upon substituting (35) in (34), we shall limit 
ourselves to linear terms in the expansion with 
respect to the correction tt> the equilibrium dis­
tribution function. 

The coefficient of D.nv in the linearized colli­
sion integral, averaged over all the equilibrium 
states, may be regarded as the reciprocal of the 
mean relaxation time. 1 After simple transforma­
tions we get 

~~n~, 
v 

(36) 

where AA.J.lV is determined by formulas (3.3), (29), 
(20), (16), and (1 7). 

We consider first the case of high temperatures, 
T » 27TJ.lM0• As was pointed out in Sec. 1, under 
these conditions the spectrum is considerably sim­
plified. If we suppose that Cl!ik = a<'>ik = ( ®ca2/J.lMo) 
x <'>ik· then 

E). = [LH eff +Be (ak)_)2. (37) 

Here Heff = H0 + {3M0• In this approximation 

(38) 

From (33), (29), and (38), we get 

(39) 

In expression (36) we go over from summation 
to integration; after integrating over angles and 
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changing to dimensionless variables, we get 

1 1t f-l 2 ( T )'/, 7 = -5 gMo a30J e-- F ('Yj), 
a ' c c 

(40) 

where 

(41) 

'fj = [LH eff I 2T. (42) 

On calculating the asymptotic behavior of the func­
tion F ( 17), we get 

{(2 I 3~ (3)) ln2 "f/, 
F ('YI) ·~ 2V-

T:"fl. 

Thus for ®c » T » 27TJ.1M0: 

('Yj<:;::l) 

("f/:?>l). 
(43) 

(!LH ett <:;:: T) 

(!LH ett .:?> T). 

(44) 

It should be noticed that at strong magnetic fields, 
the relaxation time slowly decreases with increase 
of the field ( Ta ..... H-1/2 ) but is independent of tem­
perature. The relaxation time at small fields 
agrees in order of magnitude with the result ob­
tained by Akhiezer, 1 if we suppose that M0 >::J J.ll a 3 

and if we set J.lHeff equal to J.L2/a3• 

In the case of low temperatures ( T « 27TJ.1Mo ) , 
the fundamental role in the expression (16) is 
played by the term related to the magnetic inter­
action of the spins.* Therefore for small kA_, A A. 
and I BA. I » €A_. On taking account of this, we get 
from (33), (29), and (20) 

I AAA" 0 + E1" }/ -A- Sin 2fJ~ cos (cp1,- cp") 
'" (45) 

If in the dispersion law we limit ourselves to the 
lowest power of kA_, then 

Under these conditions, however, simultaneous 
fulfilment of the laws of conservation of energy and 
of momentum leads to a divergence of the integral 
in the expression for 1/Ta to the extent of a delta 
function. On the other hand, AAJ.lll approaches 
zero. Therefore in the calculation of the relaxation 
time, it is necessary to take account, in the spec­
trum, of further terms in the expansion with re­
spect to kA. ( ..... k~ ). 

After rather tedious calculations we get, except 
for a numerical factor: 

Thus, according to (44) and (46), 

{T-'1, (T ~ 2rr[LM0 ) 

'ta ~ T-'1• ln-2T (2rry.M0 ~ T <:-;: 8c)• (47) 

(b) We now calculate the relaxation time with 
the exchange interaction taken into account. 

From (26') we have, for T » 27TJ.1Mo (for T « 
27TJ.LM0, the exchange interaction is quite unimpor­
tant for kinetic processes ) , 

where 

Hence the transition probabilities, which corre­
spond to nonvanishing matrix elements of :-IC'exch• 
have the form 

"xn11n~n" 2n A A ) ( 1) 
W nx-1 n11-1 n~-t-1 n" +1 = ·T { XAf'" + xi."!'- nxnll nf' + 

x (n,+ l)o(•x+•ll-s""-z"), 

nxnll"v.n" 2n A I 
Wn"-1n11-t-1nl'--1n" +1 = T ""'"'i.nx(ni, + )nf' 

x (n"+ l)o(sx-zi.+zf'- z.), 

n><nAnf'n" 27t A ( I) (50) w nx+1 n)\-1 nf'-1 n" +1 = T VAf>.X nx + nAniJ. 

Here 

(51) 

With the aid of the collision integral correspond­
ing to these transition probabilities, we find the 
relaxation time in the same manner as before: 

1 27t"'A oo(o o -::r- = T. LJ xi.p." {nxn~. nf' + n, + 2) 
exch ><llf>.v 

(52) 

*At low temperatures the whole treatment is carried out in 
the absence of a magnetic field. Furthermore it is assumed that 
(3 « 217• This permits neglect of the anisotropy energy in (16). On substituting the value of AKAJ.lll and going over 
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from summation to integration, we get except for 
a numerical factor 

(53) 

By comparison of this expression for 11 T exch 
with 1/Ta ""'gM0 (J.tMol®c) ( Tl®c )1/2 [cf. formula 
(44)], we conclude that for 

T ~ 11-Mo (8c /!LM0)'1•, 'Cexch<'S. 'Ca, 

and that for 

T~!LM0 (8cfiLMo)'1 •, 'Cexch"?>"a· 

This means that for T » J.!Mo ( ® c I J.!Mo ) 317 ""' 10 to 
30°K, the relaxation of a spin-wave gas occurs in 
the following manner: in a time t = T exch• the spin 
waves reach a quasiequilibrium state with a non­
equilibrium value of the magnetic moment;* there­
after, the magnetic moment "slowly" (in a time Ta) 
relaxes to its equilibrium value. For T « J.!Mo x 
( @ c I J.!Mo) 317, the nonequilibrium state of the spin 
system cannot be described as having a definite 
value of the moment. 

It must further be remembered that for T » 
®21®c ( ® = Debye temperature), a fundamental 
role is played by processes of interaction of the 
spin waves with phonons. 1 These processes will 
be treated from the phenomenological point of view 
in a separate article. 

*This is a consequence of the fact that the exchange inter­
action does not change the magnetic moment of the system. 
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