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The procedure of approximate second quantization is used to sum the special class of diagrams 
corresponding to the divergent terms in the standard perturbation theory expansion for a sys
tem with coulomb interaction (infrared divergence). An energy spectrum for a high density 
electron gas is derived, which contains both individual excitations (quasi-particles obeying 
Fermi statistics) and collective excitations of the plasma type. The correction to the speci
fic heat due to the self energy of the elementary excitations is computed. The results are 
compared with those of Gell-Mann and Brueckner. To a certain extent, the results can be 
considered to be a justification of the independent particle model in the electron theory of 
metals. 

1. INTRODUCTION 

SoME of the ideas of quantum field theory, in par
ticular the method of graphical analysis of matrix 
elements, prove to be very fruitful in quantum sta
tistics. In papers of Gell-Mann and Brueckner1 

and Sawada,2 for the case of a high density electron 
gas, a partial summation is carried out over the 
specially selected diagrams corresponding to the 
most strongly divergent terms in the perturbation 
expansion, thus eliminating the well known "infra
red catastrophe" which is related to the long range 
character of the coulomb interaction. Hugenholtz3 

has developed in detail a technique for constructing 
diagrams for a system of interacting particles 
obeying Fermi statistics, and has investigated the 
dependence of various matrix elements on the vol
ume of the system. 

In the present paper, we apply the method of 
approximate second quantization to a high density 
electron gas, and obtain the energy spectrum of 
the elementary excitations corresponding to both 
collective motion of the system and to individual 
excitations. 

In reference 1 it was shown that for a system 
of Fermi particles at high density (large Fermi 
momentum ) , only those matrix elements of the 
Coulomb interaction are important which corre
spond to transitions near the Fermi surface. The 
electrons and holes then form bound pairs. Thus 
the Gell-Mann - Brueckner partial summation of 
diagrams in which electron and hole lines form 
irreducible complexes is equivalent to treating a 

model dynamical system with a Hamiltonian which 
is obtained from the exact Hamiltonian by dropping 
all terms which do not correspond to electron-hole 
pairs. It was also shown in reference 1 that the 
matrix elements corresponding to the exchange 
of an excited pair give a contribution of higher 
order, and can therefore be dropped. In the pres
ent paper the authors start from the results of a 
paper* of Bogoliubov, Tiablikov, and Tolmachev, 
in which the idea of partial summation of diagrams 
is combined with the well developed technique of 
computation in the method of approximate second 
quantization. These ideas are proving to be very 
fruitful and, as is well known, are very sucessful 
in the theory of superconductivity. 4 Thanks to the 
convenient form of writing diagonal matrix ele
ments, we obtain in the present paper, in very 
much simpler fashion, not only the results of Gell
Mann and Brueckner, 1 •5 but also explicit expres
sions for the energy of elementary excitations, 
which they were unable to get. 

2. GENERAL FORMALISM 

Let us proceed to formulate the problem mathe
matically and obtain the general relations from 
which it is easy to find the spectrum of elementary 
excitations in which we are interested. We start 
from the exact Hamiltonian of a system of N par
tic.les (electrons) contained in volume fl: 

*This work was reported at the seminar of the Theoretical 
Physics Division of the Steklov Mathematical Institute of the 
Academy of Sciences, USSR, in September, 1957. 
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(1) 

apa and apa are the creation and annihilation op
erators for an electron with momentum p and spin 
a. We shall omit the spin indices from now on. As 
usual, we assume the presence of a uniformly dis
tributed positive charge, which is necessary to 
maintain the neutrality and equilibrium of the sys
tem. All energies are measured in Rydbergs, and 
momenta in units of the Fermi momentum. Thus 
the expressions for the kinetic energy of the elec
tron and the Fourier transform of the Coulomb in
teraction are: 

(2} 

where rs = r 0 /a is a dimensionless parameter, 
m and e are the mass and charge of the electron, 
a= n2/me2, 47rrg/3 = Q/N, PF = tikF is the Fermi 
momentum, and a = ( 4/97r )1f2. Since r 3 is pro
portional to e2, the expansion in powers of rs is 
the usual perturbation series; rs will be small if 
the density is sufficiently high. 

If we choose as the "vacuum," with respect to 
which we define the electron and hole, the state 
<I>G in which all individual states within a certain 
region (G) in momentum space are filled with 
electrons while all other states ( H) are empty, 
the creation and annihilation operators for the elec
tron and hole will be, respectively: 

"(p) = 
c;=(1-x(p))a;, b;=x(p)ap, ~1 forpEG 

Cp=(l-x(p))ap, bp=><(p)a;. 0 forpEfl. 

Then 

(3) 

Using the ideas in the cited papers of Bogoliubov, 
Tiablikov, and Tolmachev, we show that the opera
tion of summation of contributions from diagrams 
of a selected class, corresponding to the most 
strongly divergent terms in each order of the in
finite perturbation series, 1 •5 can be replaced by 
the simpler and well developed method of approxi
mate second quantization. In fact, if we retainin 
the exact Hamiltonian only terms that can be 
uniquely associated with fundamental elements 
( irreducible complexes and vertex parts ) of the 
diagrams of this particular class, it is clear that 
the exact solution of the problem for the model 
dynamical system with this simplified Hamiltonian 

is completely equivalent to the operation of sum
mation of the infinite perturbation series which 
we described above. In our case, the irreducible 
complexes in the diagrams to be summed are the 
electron-hole pair lines, while the vertex parts 
correspond to scattering of an electron by the hole 
of a given pair. It is not hard to see that such ir
reducible complexes correspond to combinations 
of the type cP+qbp and bpcp+q in the interaction 
Hamiltonian, and that just these terms should be 
kept to get the model Hamiltonian. 

It should be mentioned that a similar idea was 
essentially already used by Sawada, 2 but since he 
did not write the expression for the self energy of 
the pair explicitly, he did. not succeed in represent
ing the complete simplified Hamiltonian as a quad
ratic form to which the diagonalization method could 
be applied; to solve the problem he had to use more 
complicated mathematical methods. In doing this, 
he omitted the contribution from excitations of the 
plasma type, so that his results are not entirely 
correct. These deficiencies are eliminated in the 
present paper, and new results are obtained. 

Substituting (3) in the Hamiltonian (1) and keep
ing only terms corresponding to irreducible elec
tron-hole complexes, and also dropping exchange 
terms (an important point here is that we express 
the diagonal part in terms of the energy w ( p, q) 
of a free pair), we get the model Hamiltonian in 
the form 

H = E (tPa)- ~" (p) (1 ->< (p + q)) v2(2 + ~w(p, q) '1/f'Y/~ 
pq pq 

+ ~ v (q) ~ [ q -q + q• q• + 2 q• .q l 
L.J --zo .:::.J 'Ylp 'Ylp' 'Ylp 'Y)p, 'Ylp ~p' ' ( 4) 
q PP' 

W (p, q) = E (p + q)- Z (p), 

q* * * q where 1JP = Cp+qbp, 7Jp = bpcp+q are the crea-
tion and annihilation operators for an electron-hole 
pair, defined with respect to the state <l>G; they 
satisfy complicated commutation relations, which 
are different from those for both fermions and bo
sons. The basic idea of approximate second quan
tization just consists of the fact that when we treat 
the state <l>G and there no particles outside the 
region G, these operators can be regarded as 
Bose operators, i.e., when applied to the state <l>G 
they satisfy the same commutation relations as the 
usual Bose amplitudes. 

The Hamiltonian ( 4), which is a quadratic form 
in 71~*, 7]~, can be diagonalized using the familiar 
method of Tiablikov .6 To do this, we- make a canon
ical transformation to new Fermi amplitudes 
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~"' = ~ [ur (IX )'f)~ - vf (1X)Yjj'J, 
pq 

~x(p)(l- x(p + q)) [ ju~ j2 - f v;I 2J =I, 
pq 

2: = ~ru~(1X)'Y)r-v~(1X)'Y/3J; 
pq 

If u and v satisfy the equations 

E,u~ (IX)= w (p, q) u~ (IX) 

+ v g) ~ x (p') [(I- x (p' + q)) u~, (d) 
p' 

- E:xv: (IX)= w (p, q) v: (IX) 

v(q) ~ ' + -n L.J x (p) [(I - x (p'- q)) up;q (1X) 
p' 

+(I- x (p' + q)) v;,(1X)], 

the Hamiltonian, when expressed in terms of ~~ 
and ~a takes on the diagonal form 

R = E (<Pa)- a~q Ea\ V~ (IX) j2 x (p) (I - x (p + q)) 

(5) 

(6) 

- ~x(p)(l-x(p+q))4~+~Ea~:~a- (7) 
pq 

Here the Ea are the energies of the elementary 
excitations, which are given by the zeros of the 
function 

'Y( ) -I v(q) ~ (')(I . (, )) 2w(p',q) 
Z, q - - ----n- LJX p -X p + q z2-<U2(p', q). 

p' (8) 

The part of the Hamiltonian H which does not con
tain operators [without E ( <l>G)] 

t.E (<P ) = - ~ E ""x (p) (1 - x (p + q)) 
a LJ a LJ (£"' + w (p, q))• 

a p,q 

{
"" [ )( (p') (1- )( (p' + q)) 

X LJ (E,-w(p',q))• 
P' 

_ x(p') (1-~x (p' + q)) ]}-1 _ ~ x (p) (I_ x (p + q)) v(q) 
(£, + "'(p'' q))2 LJ 2!1 

pq 

(9) 

determines the change in energy of the ground state 
due to dynamical correlation between electrons.* 

3. GROUND STATE ENERGY 

The true lowest state corresponds to a com
pletely filled Fermi sphere ( Fermi vacuum <I>v). 
Substituting in (9) 

*The second-order exchange correction is not included in 
expression (9) for the correlation energy. 

{
I, for I p I < I, 

)( (p) = 6 (p), 6 (p) = 
0, for I p I > I, 

(10) 

and using (8) and the residue theorem, we easily 
get the expression for the correlation energy in 
the form* 

1 
b.E (<Pv) =- ~ 4rri 

q 

X Hln [I- vg) ~ 6 (p) (I- 6 (p + q)) z" ~w~~~:.\)J 
r P 

+ vg) ~ 6 (p) (1 - 6 (p + q)) 22 ~ ~~·(;:QJ} dz. (11) 
p 

The contour r runs clockwise around the positive 
real axis. If we deform r to run along the imagi
nary axis from - oo to + oo, Eq. (11) coincides ex
actly with the result obtained in reference 1 by par
tial summation of the divergent perturbation series. 

As is well known, the branch of collective exci
tations of the density-fluctuation type (plasma 
waves ) is very important in the spectrum of a 
dense charged gas. As already mentioned, exci
tations of this type contribute to the correlation 
energy. From the physical point of view, the plas
rna oscillations are important because they show 
the effect of the long-range correlation between 
electrons, which results in the screening of the 
Coulomb interaction and the cutting off of integrals 
over virtual momenta at a lowest momentum kc 
which is proportional to r!{2• This is why the idea 
of summation of divergent diagrams is completely 
justified mathematically, and is the essential phys
ical reason for the elimination of the infrared di
vergence, which is the basis of all the investigations 
discussed in the present paper. Let us show that in 
our formalism the plasma oscillations are included 
in the energy spectrum of the system. For U- oo, 

we have the asymptotic expression: 

'Y(z· )=I 2rsa [I-z.:_ln(z'+2q)"-q• 
' q + rrq• 4q (z'- 2q)"- q• (12) 

The isolated zero of the function >¥ ( z, q) deter
mines the frequency of collective ordered oscilla
tion of the system. For q « 1 it reduces to the 
familiar dispersion relation for plasma waves: 

2 ( ) 2 ,' 4rre2 n + 3 p} 2 + ) I re•m ")2 N 
w q z = \ -;n· 5 mz q . . • ,'Xfi. ' n = 0 . 

(13) 

*This formula for the case of the Fermi vacuum was obtained 
in the paper of Bogoliubov, Tiablikov, and Tolmachev which we 
cited earlier. 
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Aside from the plasma solution, we find from 
(8) only the trivial result Ea = w ( p, q) for the 
spectrum of elementary excitations. Thus, in our 
approximation the excitation energy of a pair is 
not changed by the interaction, or, in the language 
of quantum field theory, the excitation has no self 
energy. This is entirely natural since the matrix 
elements of the interaction potential corresponding 
to diagrams with external lines, which are the ones 
which would give rise to a self energy of the ele
mentary excitations, were dropped in getting the 
model Hamiltonian. 

We also note that '1)* and TJ are not Bose am
plitudes with respect to the excited state, since the 
occupation number of the excited state cannot at 
all be assumed to be zero. Consequently our model 
Hamiltonian is not suitable for investigating the 
spectrum of elementary excitations if we use the 
Fermi vacuum as the initial state. 

4. ENERGY OF EXCITED STATES 

This difficulty can be overcome as follows. We 
shall consider the model Hamiltonian (7), in which 
the initial state <Po represents the Fermi vacuum 
plus an electron-hole pair with momenta Po + q0 
and p0. Then all the preceding formulas remain 
valid except that, instead of (10), we have to substi
tute 

x (p) = 6 (p)- ~ (p - P0 ) + tl (p -Po- Qo), 

{
1, if p=O 

Ll (p) = 
0, if p =I= 0. 

' 

(14) 

The interaction Hamiltonian, consisting of opera
tors '1)* and '1) defined with respect to <Po, al
ready contains processes of scattering of an elec
tron (or hole) with absorption or emission of a 
pair with respect to the Fermi vacuum <Pv. Thus 
the treatment of the new model Hamiltonian is 
equivalent to summation of diagrams of the type 
shown in Fig. 1 (except for the ground-state dia
grams ) . Then the energy of excitation of a pair 
is given by the obvious relation: 

(15) 

= w (Po• Qo) + W x (Po• Qo) + tlE (<Da)- tlE (<I>v ), 

where E (Po + q0, Po) is the excitation energy of 
a pair; E (Po + Qo, Po) is the energy of the excited 
state containing one pair, and E0 is the energy of 
the ground state. Wx (Po, Qo) = Wx (Po + Qo) -
Wx (Po) is the exchange correction to the excita
tion energy of the pair. The expression for W x ( p) 
is well known: 

1 [ 1- p2 1 + p] W x (p) =--- 2 + --In -1-- • 
1tCI.fs p - p 

Substituting expression (11) for Cl.E ( <Py) and 
tl.E (<Po) in (15), using (10) and (14), and dropping 
all terms which vanish as n - oo, we get the ex
pression for the excitation energy of a pair 

E (Po + Qo, Po) 

= <.U (Po, Qo) + W x (Po, Qo) + G (Po+ Qo)- G (Po), 

G ( ) - - _2_ _1_ 
Po - 7ts 2-rti (16) 

Using the obvious symmetry property E ( - Qo - p0, 

-Po) = E (Po + Qo, Po), we can change (16)* to the 
more convenient form: 

2 (" d'q 
G(Po)= -7 j7 

X ~ ( 1 - u tan"1 + J w(p0 , q) du 

_ 00 lq2+ 4.;a (1-utan·• ~-)J(u2 +w2 (p0,q)) 

(17) 

From (17) we see that G (Po) is independent of 
the volume of the system, which should have been 
anticipated from physical considerations, since 
this quantity represents the correlation correction 
to the energies of the elementary excitations, and 
these quantities are intensive quantities as n- oo, 

The explicit form of G (Po) can be obtained by 
numerical integration of (17). 

FIG. 1. We use dia
grams of type con
sidered in reference 3. 
The solid line shows 
the electron, the 
dotted line - the hole. 

Po ,..,---- ~- ......... ........._ Po 
----~ ~c.----

,.,~-

5. SPECIFIC-HEAT CORRECTION 

From (16), we can easily find the correction to 
the specific heat in the Gell-Mann approximation.5 

For this purpose we need to know the derivative of 
G (Po) at I Pol = 1 (from now on, we assume that 
Po » 1 ) . Since the divergence in the perturbation 
series for the de.rivative of G (Po) at I Pol = 1 
appears one order earlier than for G (Po), we 
need only include terms proportional to r8 1 and 
r ~1 ln r s. 5 In calculating the derivative of G (Po ) 

*In (16) and subsequent formulas, w(p0 , q) = q·(2p0 + q)/2q. 
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in this approximation, it is sufficient to differenti
ate (16) only with respect to the limit of the q in
tegration, since the other terms give contributions 
of higher order in rs. For the z integration it is 
convenient to choose the contour r as shown in 

Fig. 2. The integrals over r 1 and r 3 give no 
contribution, since the subsequent q integration 
goes only over the surface of the unit sphere 
jq -Pol== 1 (!Pol== 1), on which w(Po. q) == 0. 
Thus we have 

( ' 1 ) 
dG (Pol 1 _ ::-4 ( d•q [ ~ 1- ztanh"'z- 2w (Po, q) (p0 , Po+ ql l 

d [ - s .\ ' res 4 
Po p,~ 1 7t q [q•+ ;a (1-ztanh·•+)J~z2 --w2 (P0 ,q)) 

1 - ztanh"1 - (p0 , Po + Q) ( 1 ) • 

xo(l-IPo+qi)=-:-.4 ~~q[\ 4,.( ')] o(I-fPo+ql) 
q2 + _s_ 1- ztanh"1 -

7t Z z-w(p,,q) 

(res denotes the residue at the point z == w ( p0, q )) . 
Noting that w (p0, q) == 0 on the surface jq +Pol 
== 1 (!Pol == 1 ), and also that lim z tanh-1 ( 1/z) == 0, 
we have z--o 

dG (p0 l I = -4 \ d3q (Po, Po+ ql 0 (I -I p + q 1 ) 
dpo p, ~1 7ta .\ q• (1 + 4r sr1./7tq2) o 

+1 
-2 (' xdx 

= 7 .\ (1-x)2 (1 +2r5a/1t (1-x)) · 
-1 

(18) 

Here we have changed the integral over q to a 
surface integral over a sphere with center at p0, 

and x == Po· (Po + q). Expression (18) diverges log
arithmically. When we add to it the derivative of 
Wx (Po) at Po == 1, the logarithmic divergences 
cancel and we get an expression which is identical 
with Gell-Mann's5 result: · 

iJE (Pol ~ _2_ __1_ xdx I ar s _1_ - 1 - I +1 
[ 2 ] 

iJp0 p, _ 1 a2r; + 1tr5rr. ~ (1-x) + 1t (1- x) • 
-1 

For the specific heat, we find the expression 

cjcF=(l + ~: [-lnr.+ln[7t/2]-2J+···f1
, (19) 

where c and cF are the specific heats of the 
electron gas in the presence and absence of inter
action, respectively. 

6. DISCUSSION OF RESULTS 

From the results of Sees. 3 and 4 it follows that 
in an electron gas there are two types of elemen
tary excitations: excitations of individual pairs and 
excitations of the collective type (plasma oscilla-

z 
FIG. 2. The countour r is 

split into r, •. r., r,. r, cir
cles the cut from the origin 
to the point z = 1. r. and r, 
encircle the poles z = w (p0 , 

q) and z = wp(q), respectively. 

tions ) . In investigating the physical properties of 
the electron gas in a metal at ordinary tempera
tures, excitations of the individual type are of pri
mary interest, since we know that the plasma os
cillations are not thermally excited. The essential 
point is that, even when we take account quite pre
cisely of the dynamical correlations between elec
trons, the main role in these phenomena is played 
by the independent elementary excitations: the 
electron-hole pairs (quasi-particles, satisfying 
Fermi statistic-s ) . The divergences in the usual 
perturbation theory expansion for a system with 
Coulomb interaction prove to be ephemeral, and 
after appropriate formal manipulation give finite 
contributions to the energy of the ground state and 
the elementary excitations. These ideas are real
ized in a very simple way in the present paper by 
using the method of approximate second quantiza
tion. We have obtained finite expressions for the 
self energy of the elementary excitations. There
fore, to a certain extent our results can be re
garded as a justification of the independent par
ticle model in the electron theory of metals, which 
has been applied with great success to treat a va
riety of metallic properties despite the fact that 
this model completely neglects correlation effects. 
This problem has been repeatedly discussed by 
various authors (cf. for example, reference 7). 
The treatment of a more realistic model, in which 
the effect of the periodic field of the crystal lattice 
is included right from the start, will be the subject 
of a separate investigation. 

The authors take this opportunity to express 
their deep gratitude to Acad. N. N. Bogoliubov and 
V V. Tolmachev, under whose direction and con
stant interest this work was completed. 
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An algebraic method is suggested for treating the relativistically invariant equations of high
spin particles. The direct product of generalized Dirac algebras underlies the analysis. This 
method can be used to obtain explicit expressions for the infinitesimal rotation matrix, the 
spin operator, the metric and reflection operator, as well as to limit the number of represen
tations taken into account. The equations can be treated directly either in tensor or in spin
tensor form. The commutation relations are automatically obtained in parametric form. 

1. INTRODUCTION 

WE consider relativistically invariant equations 
of the form 

(1) 

where lf! is a particle wave function with a finite 
number of components which transforms accord
ing to some finite-dimensional representation of 
the Lorentz group. Equation (1) shall be called 
relativistically invariant if under the Lorentz 
transformation xi= likxk together with the trans
formation l/J' = Sl/J it remains formally invariant, 
in other words if 

(2) 

Now the conditions of (2) are fulfilled if 

[I ik• I ill = - 'OtJhz + oil hi + okJI i! - o~<zi ti• ( 3) 

[IX;, I Jk] = oiJIXk- OtniXJ, (4) 

where the Iij are the infinitesimal-rotation mat
rices, defined by 

We shall consider here the problem of finding all 
relativistically-invariant equations (1) that satisfy 
the additional requirements that they be invariant 
under reflection, that there exist a nondegenerate 
real Lagrangian, that the energy density be positive 
definite for particles with integral spin or the 
charge be positive definite for particles with half
integral spin, and that the equations be irreducible. 

This problem has been treated in general form 
by Gel'fand and Iaglom. 1 Their method can be used, 
in principle, to obtain all possible equations for 
high-spin particles. In actually obtaining the equa
tions, however, certain difficulties arise. Among 
these are, in particular, the analysis of irreduci
bility, the transition to spin -tensor (or tensor) 
form, and the determination of the algebra of the 
ak matrices. Further, there is no way to tell 
whether all of the equations belonging to a given 
maximum spin have been found. 

While Gel'fand and Iaglom base their consider
ations on explicit expressions for the infinitesimal 
operators, Harish-Chandra2•3 develops an algebraic 
method based on the study of an algebra designated 
U ( a). This is the a -matrix algebra of the forms 




