
SOVIET PHYSICS JETP VOLUME 34 (7), NUMBER 6 DECEMBER, 1958 

ENTROPY CHANGE DURING RELAXATION OF A GAS BEHIND A SHOCK WAVE 

Iu .. P. LUN' KIN 

Leningrad Physico-Technical Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor December 25, 1957 

J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1526-1530 (June, 1958) 

We have investigated entropy changes which take place in shock waves as translational, rota­
tional and vibrational degrees of freedom are successively excited and as dissociation is in­
duced. It is shown that the largest entropy change takes place when the translational degrees 
of freedom are excited; excitation of other degrees of freedom involves smaller entropy vari­
ations. 

1. INTRODUCTION 

J N a previous paper, 1 the author set forth a method 
of consideration of nonequilibrium processes in a 
shock wave, making use of the introduction of zones 
of "quasi-equilibrium." The process of transition 
is as follows: a sudden throttling of the gas over 
several mean free path lengths produces an increase 
of temperature of the translational degrees of free­
dom, the remaining degrees of freedom remaining 
"frozen" because of their large relaxation times. 
Further, an additional retardation of the gas takes 
place and there is a transfer of energy from the 
translational degrees of freedom to the rotational; 
the vibration are "frozen" in this case. Then the 
vibrations are excited, and later there is dissocia­
tion of the gas. 

Let us denote by the index 1 parameters of the 
inflowing current; by the indices 2, 3, and 4 the 
parameters in zones where the translational, ro­
tational and vibrational degrees of freedom are 
completely excited; and by the index 5 the param­
eters in the zone of equilibrium dissociation. In 
what follows, we limit ourselves to diatomic gases. 
The introduction of zone 2 is strictly valid only for 
hydrogen and deuterium; in the heavier gases, the 
relaxation times of the translational and rotational 
degrees of freedom differ less. 

In zones 2, 3: 

Tk/T1 = PkPdP1Pk· 

In zones 4, 5 (cf. reference 1): 

(1) 

(2) 

(3) 
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Tk/T1 = (pkp1/p1pk)/(1 + x), (6) 

i~/(i~- 1) = H k/(1 + x) RT k; (7) 

Hk = Hk ( Pk, Tk) is the enthalpy, referred to one 
mole JJ. of the inflowing gas, and K is the degree 
of dissociation. 

Making use of the method outlined above, we 
obtain the entropy change of the gas in transition 
from zone to zone. 

2. GENERAL RELATIONS 

In the absence of dissociation, the entropy change 
per mole of gas is equal to 

dS = Cp dT/T- Rdpfp; (8) 

whence 

S2- S1 = 2ln T2 _ In .12. (9) 
R 2 T1 P1 ' 

Sa-S2 = 2ln Ts_ + ln~-ln Ps_. (10) 
R 2 T2 T1 P2 

(11) 

T c is the characteristic vibration temperature. 
When T1 » Tc, i.e., the vibrations are already 

excited in the flow, we have 

54 - Sa = 2.ln ~ + In~-· In 1!!_ • 
R 2 ~ ~ ~ 

(12) 
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If T1 « Tc « T4, which is the case in strong 
shocks, 

s,- Sa = 2_ln ~ + 1 + _Tc +In .2:!_-ln ?..!.. • (13) 
R. 2 Tt T, Tc Ps 

In the presence of dissociation, 
dT dT 

dS = (1- x) Cppr + 2xCpj T 

+ D (T)~-(1 + x) R~. 
We can set the energy of dissociation D ( T) 

equal to the energy of dissociation at absolute 
zero D0• 

(14) 

To compute S5 - S4, we need to know the de­
pendence of K on T on p in the nonequilibrium 
region between zones 4 and 5. We make use of 
the conservation equations and the equation of 
state 

pu =IX, p + pu2 = ~. H + IJ.U2/2 = s; 

PIP= RT (1 + x)/IL 

(15) 

(16) 

a, {3, E are -expressed in terms of the boundary 
conditions; 

T T 

H = (1-x) ~ Cp2 dT+ 2x ~ Cp1 dT +xD0 • (17) 
0 0 

The four equations in (15) and (16) contain five un­
knowns, p, u, p, T and K. We can therefore ex­
press K as a function of p or T alone. The 
exact evaluation of such functions is difficult; 
therefore, we make use of approximate relation­
ships. 

We set 

Cp2 = a+ Tb, Cp1 = c + Td; (18) 

a, b, c, and d are certain constants. From Eqs. 
(15) and (16) we have 

u=(1 +x)1XRT/~IJ.; u2 =(1 +2x)(1XR.T/~IJ-.) 2 • (19) 

Substitution of (18) and (19) in (15) yields 

_ e-aT- (e + b) T'/2 _ 1 f 1 2] 

)(-Do+ mT+(2e+n) T2;2= X (T) Ls-aT -z-(e + b}T • 

where e = p, ( aR/{3p,) 2, m = 2c -a, n = 2d- b. 
In a similar fashion, we find 

K = (2D0P { s - D0 - ( f -1 J meR. 

+ {[s-Do -( ~ -r)':RT 

(20) 

+ 4Do[s -(f-1 )~Jf'} = (2D0fl [F- m~R/ep (21) 

+ V (m~Rjep)2 + Gm~Rjep + H] 

= (2D0fl [F- m~Rjep + YQ (p)]. 

In the integration of Eq. (14) over p, we introduce 
the variable x = m/JR/ep. Then 

S5-S4=L (T -T )+L I X(T4 ) _L3 (T5)_-J-L3 (T4) 
R. 1 '1 5 2 n X (T 5) X (T .) ' X (T 4) 

+ L4 [J (T4) -J (Ts)l 

+ (1 + YH + F)ln _P4 -~ {m~R. (_!__ _ _!__) 
2D0 P• 2D0 e P5 p, (22) 

- y Q (P5) + YQ (P4) + V H In H + m~GR./2 ep5 + V~ 
H + m~GR./2 ep4 + V HQ (p4) 

_ G ln V:i[(Ps) + mM! ep5 + G/2 } , 
V Q (p4) + m~R./ ep4 + G/2 

where the following notation has been introduced: 

L R. = e (n- 2b). L R = 2an + m (e +b) _ mn (e +b) _ !!_ . 
1 2e + n ' 2 2 (2e + n) (2e + n)Z 2 ' 

1 
L3R. = aD0 + sm + 2 [D 0 (e +b)+ s (2e + n)] T 

= qt + q2T; 
(23) 

J = 2 tan-1 m+ (2e+n)T 
Y2D 0(2e+n)-m 2 Y2D 0 (2e+n)-m 2 

In order to obtain the explicit dependence of the 
entropy change in every region of M 1 and y1, we 
consider the limiting cases of weak and strong 
shocks. 

3. SHOCK WAVES OF WEAK INTENSITY 

In this case the specific heat of the gas can be 
considered constant; we need consider only S2 - S1, 
Sa- s2, s4- Sa: 

Pk = 1 + 6., 6. = -~ (Mf ~--1 ) ~ I. (24) 
Pt Yk + 1 Yk 

We employ a power series expansion in D., whence 

(25) 

Y2 = 5/a. y., = 7/ •• 7/5 > Y4 > 9/7· 

Obviously, for given 'Yk and M 1, the entropy 
change is the greater the larger the value of y 1; 
it has a maximum value for monatomic gases. 
For given y 1 and Mto the entropy increases with 
decrease in 'Yk· i.e., successive excitation of the 
degrees of freedom of the molecules is accompa­
nied by an increase in the entropy. 

From Eq. (25) we have 

(26) 



ENTROPY CHANGE DURING RELAXATION OF A GAS 1055 

s.-s3 = 2y, ("-=--M2- 1 ,a 
R. 3 (y, + 1)2 Y• 1 ) 

35 ( 5 " )a s3 - s. 
- 2Hi Ty1Mi- 1 < -R- · 

(28) 

For % > Mi > 1, the excitation of the transla­
tional and rotational degrees of freedom takes place 
without entropy change, and only the subsequent 
excitationpf vibrations leads to its increase. This 
phenomenon is known as the Kantrowitz effect2 for 
supersonic velocities. No sharp front of the shock 
wave will be observed, but rather a gradual change 
of the parameters over distances of several tens 
of mean free path lengths. 

4. STRONG SHOCK WAVES 

In this case, considering M1 > 10, Eqs. (1) to 
(6) are written in the form 

where Y2 = %, Y3 = 1fs, 1'4 2:: %; in accord with 
Refs. 3, 4, and 5, is= 1.2. Making use of Eqs. 
(9), (10), (12), (13), and (29) we obtain 

3 
(S2 - S1)/R = 31n M1 + :r In 11- 3.897, (30) 

(Sa- S2)/R = 2ln M1 +In Y1- 2.829 < (S2- S1)/R. (31) 

(S4 - S3)/R lr,>rc = 2ln M1 +In Y1- 3.098 <(Sa- S2 )jR. 
(32) 

For most practical problems, Tc /T1 ;;; 10; there­
fore, 

(S4 - Sa)!Rr,aca• = 21n M1 +In y1 + 91.43jy1Mi 

- 4.401 < (S4 - Sa)/R lr,>Tc . (33) 

It follows from Eqs. (32) and (33) that in a gas in 
which the vibrations are already appreciably excited 
in the flow, the entropy change, for the.same values 
of Mt. is larger than in a gas with the vibrations 
unexcited. 

The expression for S5 - S4 is rather compli­
cated. We shall simplify it, in order to estimate 
the dependence of the entropy change in dissocia­
tion upon M1, '}'1, and D0• Tabulated data give 
ar:::!4R, cr:::!2R, mr:::!R, br:::!dr:::!3to6X10-2R/Tt> 

n r:::! b; moreover, D0 r:::! 2 x 102RT1 r:::! y1M~RT1 • 
Making use of these values, we 0btain 

(S5 - S4)/R =(A+ By1MiRT1/D0) ·10-2 

< (S4 - Ss)/R lr,<Tc<T,; 
(34) 

A and B are constants on the order of unity. It 
is clear that the entropy change depends more 
strongly on M1 in the dissociation of a gas than 
6S does in the excitation of arbitrary degrees of 
freedom of the molecules. For a given M1 this 
change increases with diminishing energy of dis­
sociation. 

On the basis of Eqs. (26) to (28) and (30) to (34), 
it can be verified that the maximum entropy change 
takes place in the excitation of the successive de­
grees of freedom. For subsequent excitation of 
rotation, vibration and dissociation of the gas, the 
increase in entropy is lessened. This is explained 
by the fact that in an isolated system tending to­
ward equilibrium, an increase in the total entropy 
can be accompanied by a decrease in the entropy 
of its separate parts; for a gas these will be the 
different degrees of freedom of the molecules. 
As is easily seen, in the successive excitation of 
the degrees of freedom of the gas, less of it is 
throttled, and a smaller fraction of the directed 
motion is transformed into heat energy. Such an 
excitation takes place therefore more and more at 
the expense of the redistribution of the already ex­
cited degrees of freedom. 
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A study is made of the scattering of K mesons by nucleons, with inclusion of effects of the 
possible formation of :=: particles. In addition to the other propositions of the standard the­
ory, special use is made of the conditions of causality and of the unitary nature of the S 
matrix. These conditions, together with the additional hypothesis that the interaction is in­
variant with respect to rotations in four-dimensional isotopic spin space, enable us to obtain 
equations which are valid at not too high energies and are of the type of Low's equations1•2 in 
the theory of 1r -meson scattering. The form of the interaction is involved in the equations 
through the inhomogeneous term. These equations are at the same time a generalization of 
the dispersion relations for scattering at arbitrary angles. Analogous equations for 1r -meson 
scattering have been obtained in reference 2, where, however, use was made of a special spec­
tral representation of the scattering matrix.3- 5 This spectral representation is not used in the 
present paper. 

THE fact that it is not a trivial problem to go from 
the scattering of 1r mesons to a treatment of K­
meson scattering is mainly due to the special nature 
of the behavior of the K mesons with respect to 
transformations in ordinary space and isotopic spin 
space, and also to the fact that in the case of the K 
mesons it turns out to be necessary from the very 
beginning to take into account the interactions with 
particles that do not play any direct part in the scat­
tering, in particular ~ and A particles, and also 
1r mesons. In addition, one must give more careful 
attention to relativistic effects. The interactions 
are here taken to be the renormalized ones; effects 
of weak interactions are neglected. This last con­
dition is formulated as the requirement that all in­
teractions be invariant with respect to rotations in 
the four-dimensional isotopic space.6 In this space 
nucleons, :::: particles, and K mesons form the 
four-dimensional isotopic spinors: 

~0 K+ 

'YN= 
~n . and K = K" =IIK1 11 . (i = 1' 2, 3, 4); 
~so /(0 

~s- K- (1) 

The following representation is chosen for the iso­
topic matrices:* 

*Hereafter, where no special stipulation is made, the nota­
tions of reference 7 are used. 

Y~ = I 0 "ot j (i = 1, 2, 3); Yot = I 0£2 £02 j; 
l --c, 

. I i£2 o I 
Yfi = 0 -i£2 ' 

This way of writing makes it possible to give a 
unified description of the dynamical behavior of 

(2) 

all K mesons, and furthermore the "hypercharge" 
Y6 of the heavy fermions is given apart from a. 
factor i by the eigenvalue of the matrix 'Y~. Un­
like the convention of reference 6, we regard the 
isotopic space as pseudo-Euclidean, since only 
in this kind of a space can an isotopic spinor K 
that does not vanish identically be taken to be 
self-conjugate: 

K = -iy~K*. (3) 

It is necessary, however, to impose the invariant 
requirement that K be self-conjugate, owing to 
the existence of only four different K mesons. 
In connection with the experimental facts that are 
interpreted in terms of the presence of different 
parities of K mesons, one can assume* that an 

*One can try to give this fact a general explanation through 
the idea of a fusion of the ordinary and isotopic spaces. 8 We 
note also that the definition of the hypercharge is here an 
obvious four-dimensional way of writing the isotopic fermion 
number of d'Espagnat and Prendtki. The reflections in this four­
dimensional isotopic space for the K mesons are analogous to 
the Pauli transformations9 for spinor particles. 
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