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We calculate the cross section for the inelastic scattering of neutrons in ferromagnets, ac
companied by the absorption of one magnon and the emission of another. It is shown that this 
cross section is small compared to that for scattering with absorption or emission of a single 
magnon. It is also shown that the role of scattering processes in which more than two mag
nons participate is negligible. 

IN a preceding paper of the author1 it was shown 
that there are two types of multimagnon processes 
of scattering of slow neutrons in ferromagnets: 
two-magnon scattering, in which one magnon is 
absorbed and another emitted, and three-magnon 
scattering, in which two magnons are absorbed 
and one is emitted. 

This result was based on spin wave theory in 
the form given by Dyson.2•3 In Dyson's papers all 
types of interactions between atomic spins were 
neglected except for exchange interaction ( which 
can be done only for ferromagnets with a high 
Curie point), and it was assumed that the magnetic 
atoms (or ions) form a simple Bravais lattice. 
Therefore the conclusion in reference 1 concerning 
possible multimagnon scattering processes is also 
valid only with respect to such ferromagnets. 

We shall calculate the cross section for two
magnon scattering, limiting ourselves for simplic
ity to a scatterer with a cubic lattice. Using Eqs. 
(1.5d) and (1.6), we find the following expression 
for the two-magnon scattering cross section* 

d ., / d" 2 2p2 ( ) Vo p' -2W 
cr+J,-1 ~• =ToY q (2rc)" '/) e q (1) 

X [I- ( q~mrJ n (!L) [n (p) +I] o (q + p.- p +'t) dpdp., 

where, from conservation of energy, 

p'2 = p2 + oc (!L2- p2), and oc :.?>I. 

Fr9m here on, as in reference 1, we replace 
q by 7' everywhere except in the argument of the 
o -function, and then integrate with respect to p. 
The result is: 

*We use the notation of reference 1, which we cite as I. 
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d ., /d" 2 2p2 ( ) -2W V0 [t (m·-;)2] cr+1.-l ~• = ruy 't e, ., (2rc)" - - .. -

X (p~)2 [n(p+)+1J+(p:_ _ _)2[n(p_)+1!'/ (2) 
rxKp [cos• ~- rx-1 (rx + 1) (1- Q2rx-IK-2)] ' 

where 

I(= p + p., 

p~ = oc-1 (Q2 __ p'J.), 

p'± = ocK (oc + lf1 

X {cos2 C+[cos2 C-oc-1 (oc+I)(1--Q2ot-1K- 2)]'f'), (3) 

and t is the angle between K and p' . 
We can now easily integrate (2) over dQ, 

choosing the z axis along the vector K. (The 
fact that this integration can be done relatively 
simply is the reason why the total cross section 
is easier to calculate than the differential cross 
section, since integrating (2) with respect to J.' 
is very complicated.) We have to treat two cases: 

I) ocK 2 > Q2 , 

In the first case 

I :;;;,. cos~> cos C0 = { ( oc + 1) oc-1 [ 1 - Q2 ( ocK2f 1 J) '/, 

(4) 

while in the second,* cos t varies from 1 to - 1; 
also, in the second case p~ < 0 and we need keep 
only terms containing P+ in (2). In both cases the 
integration over dQ reduces to an integration over 
dp~. The integral is easily done and the final re
sult is the same for both cases: 

*One can show that the condition q "' 'r is not violated for 
any angle(. 
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where 

R.; = (o: + 1t2 [V(o: + 1) Q2-o:K2+ KJ2 =(IX: (r (6) 

x{VC!l-o:-1P)2+ IX~i (p2-P2) +o:-1JP+!llr. 

We still have to integrate (5) with respect to J.L. 
The integration over the direction of J.L can be 
changed to an integration over the length of the 
vector K = P + J.L, so we must find the limits of 
variation of K. But it is obvious, on the one hand, 
that 

IP-f!.l<K<P+IL· (7) 

and, on the other hand, we have from (6) that 

K < (1 + 1 I o:)'I•Q. (8) 

The simultaneous inequalities (7) and (8) give the 
following results: 

(1) If p > P, K varies between the limits (7) 

for all f.L· 
(2) If 

P > p > lf o:l(o:+1)P, 

K varies between the limits (7) for all f.L except 
those lying in the interval 

o:-1 [P- Vco: + 1) (P2- p2)J 

~fl.~ o:-1 [P + V (o: + 1) (P2 _ p2)], (9) 

while for these values of J.L, K varies in the in
terval 

(3) If 

then for 

[L <tL1-< o:-1 r- P + Vco: + 1) (P2- P2)l 

no scattering can occur; for values of f.L in the 
range 

the limits for K are given by (10), while for 
larger f.L they are given by (7). 

(11) 

(12) 

The. shape of the region of integration over K 
and f.L changeswhen P=p and P=pv'(a+1)/a. 
Considered as a function of P, the total cross 
section a~1 , _1 ( p, P) therefore has a kink at these 
values of P. One can show, moreover, that for 
P=p±O 

acft-1. -1 (p, P) I aP = + oo, 

and consequently the cross section is a maximum 
for P = p. This is related to the fact that, for 
P = p and f.L = 0, both n ( f.L) and the logarithm 
in Eq. (5) become infinite (the latter because m 
= 0 when P = p and f.L = 0 ) . 

From now on we shall assume that 

pI 0: 4:; ~. (I P2 - P 2 l/ o:)'1•4:; ~. 

~ = o-1 1f2vT I Tc· 
(13) 

Since a » 1, these inequalities are valid over a 
very wide range of values of p and T. 

When (13) is satisfied, expression (5) simplifies 
considerably. In fact, when f.L ;;::. {3, R± :=::: f.L =F K/ a, 
and the logarithm in (5) becomes 

(14) 

while, if f.L « {3, the expression in the logarithm 
in (5) can be replaced by R:_R!, since in this case 
R~ « {32. 

After such a simplification, it is easy to deter
mine the dependence of the total cross section on 
a. First, it is clear from (14) that the contribution 
to the cross section from large values of f.L ( f.L ;;::. {3) 
is proportional to a-1• 

In the region of small f.L, so long as a~> K, 

In (R.:_R.'"t2) ;:::::; 4K( o:R.+P, 
i.e., the contribution to the total cross section is 
also proportional to a-1 in this case. The condi
tion aRt > K is violated if 

fl.2 < o:-1 (2P[L + p2 -· p2) + 0 (o:-2), 

but the equation R~ ( f.L ) = 0 has roots for just 
these values of f.L, so that in this case (5) has a 
logarithmic singularity and the contribution to the 
cross section from this region of values of f.L is 
in order of magnitude no greater than A( a ln A 
+ b), where A gives the dimensions of the region 
and a and b do not depend on A. Obviously, if 

pI o: > V o: 11 p2-P2j, 

then A "' a-1, and the contribution to the cross 
section is of order 

o:-1 (a' In o: + b'), (15) 

where a' and b' do not depend on a. But if 
a-1 P < v'jp2 - p2jj a, then from (11), 

D. = V o: 1 I p2_ p2 i + o ( o:-1) - lL1 = o ( o:-1) 

and the contribution to the cross section has the 
same form (15}, but with different values of a' 
and b'. Finally, the contribution to the total cross 
section from the difference R:_ - ~ which appears 
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in (5) is also proportional to 1/ a, so that the total 
cross section has the form (A ln a+ B)/a. 

As already mentioned, for given values of p 
and T the cross section is a maximum when p 
= p. The cross section in this case is calculated 
in the Appendix, where the following result is ob
tained: 

cr~ _ (p, p) = 16r.2r2'Y2F2(T)____:'Q__e·-2WT 
~· 1 0 I (21t3) (16) 

[1 (-r.m\2 J 1 (2vT)2 r ( cc 1/'fV'T) J 
X -\--T) o•ccp ,r-; In pa V T-; +2 +O(cc-2). 

One can also show that for the case of long-wave 
neutrons ( p « T) and for temperatures which 
are not very low ( Ta-112 « (3112 ), the total cross 
section for two-magnon scattering is given by 

where C = Y2 + ln 2 - 11'2/12 r:::J 0.37. 
For comparison, we give the expressions for 

one-magnon scattering in the two cases which we 
have treated. Using (I.23) and (!.35), we find for 
p =p: 

cr; (p, p) = cr:::_1 (p, p) + cr:t1 (p, p) = 21rSy2r~ (18) 

X p (T) e-2WT l1 + l'm•T)2] _1_ 2vT [in poN'J, + 0 ( _2)] 
T (po) 2 T c em IX _ ' 

while for p « T and Ta-V2 « {3V2, we find, using 
(I.24): 

cri (p, T) = cr:::..1 (p, T) (19) 

= 21rSr~y2P (T) e-2WT [ 1 + (m~-r}J T;02 2;~ (cc-'1, + 0 (cc-'1•)]. 

Comparing (16) with (18) and (17) with (19), we 
see that 

cr:t1.-1 (p, p) <!;; cr; (p, p); o:tl.-1 (p, T) ~ cr:::_1 (p, T). (20) 

It is obvious that in general two-magnon scattering 
is small compared to one-magnon scattering. When 
condition (13) is satisfied, this follows from the fact 
that in this case a~1 _ 1 is proportional to a-1. 

Let us now estimate the magnitude of the three
magnon scattering. Using (I.5d) and (I.5c), it is 
easy to show that* 

0+1. -2 (p, P) 

=-2s~21t)a~d!£n(fL) ~ 0+1.-1(Q, I P+!£1), (21) 

where, in general, the region of integration over p. 
may be smaller than an elementary cell of the re
ciprocal lattice. Furthermore, it is obvious that 

*For simplicity we assume the scatterer to be unmagnetized. 

0+1. -1 (Q I P + fL D < o:t1. -1 (Q, Q), 

while it follows from (16) that 

0 +1. -1 (Q, Q) < ~ (!+1. -1 (p, p), 

since p < Q, and therefore 

0+1. -2 (p, P) < 0+1. -1 (p, P) 28 ~~1t)a ~ dl£ n (fL). 

Extending the p. integration over the whole space, 
we obtain finally 

cr+r_ __ 2 (p, P) < xcr:t1. _1 (p, p) j 2S, (22) 

where 

x = 1/s~(3/2)(v 0 (&3r.'1,)(2vT fTc)'l•<!;;.l. (23) 

Thus we see that the three-magnon scattering is 
small compared to one-magnon scattering. 

As was stated at the beginning of the paper, all 
the possible multi-magnon scattering processes 
are included in the two we have treated if we can 
neglect all types of interaction of the atomic spins 
except the exchange interaction, and if the mag
netic atoms form a simple Bravais lattice. 

In the general case one can assert4 only that the 
principal multi -magnon processes will be those in 
which the total number of spin waves changes by 
no more than unity. This follows from the fact 
that th.e projection of the total spin of the ferro
magnet on the direction of magnetization is at least 
approximately an integral of the motion. In fact, 
the scattering amplitude depends linearly on the 
operators st, Sj and sf. But it was shown in 
reference 1 that if the projection of the total spin 
of the system is conserved, the matrix elements 
of the operator Sz are different from zero only 
for transitions involving no change in the projec
tion of the tota~ spin, while the operators st give 
non-zero matriX elements only for transitions in 
which the projection of the total spin changes by 
± .1. It follows that the operators sf are respon
stble for the scattering without change in the total 
number of magnons, and the operators s[ for the 
scattering in which this number changes by ± 1. 

If, however, we take account of the fact that the 
projection of the total spin of the ferromagnet is 
not an exact integral of the motion, then obviously 
scattering processes are possible in which the 
change in the total number of magnons is greater 
than unity. The simplest processes of this type 
are scattering with absorption of two magnons and 
scattering with emission of two magnons. Let us 
assume, as before, that the energy of a magnon is 
a quadratic function of its momentum and that a 
is a large number. Then, just as in the case of 
(T~1,-1• we can show that ar,o and af,-2 are pro-
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portional to a-1 (provided, of course, that condi
tion (13) is satisfied)' and consequently ar 0' 

T T ' ao,-2 << a+t,-1 · 
We now show that if there is scattering with 

emission of two magnons and absorption of one 
magnon, this cross section is small compared to 
a~1 _1• In fact, as in the derivation of (22), we can 

' write 

a~2, -1 (p, P) ~ ;'+2.o(P, p) (2:")3 ~ d-vn (v) 

= x-;+2,o(P, p), (24) 

where ai2,0 is the total cross section which would 
be gotten from (1) by replacing n ( t-t) with n ( t-t) + 
1 in (1), and changing the sign of t-t 2 in the expres
sion for p'. * The actual cross section for scatter
ing with emission of two magnons, if it occurs, dif
fers from 0+2 0 by a factor which is small com
pared to unity.' As we stated above, a~2 0 is pro
portional to 1/ a, and consequently a~2 ' 0 ~ a~1 -t. 

T T ' ' so that a+2,-1 « a+t,-1· In this same way we can 
show that the cross section for any other multi
magnon scattering process is small compared to 
ait-dp,P). 

' We have thus found the following result. 
If the energy of a magnon is a quadratic function 

of its momentum, the cross sections for all pos
sible multi -magnon scattering processes are small 
compared with a~1 , _1 ( p, P). On the other hand, 
aXt -1 ( p, P ) in turn is small compared with the 

' cross section for one-magnon scattering (at least, 
for large a). Therefore multi-magnon scattering 
processes play a minor role in the inelastic scat
tering of slow neutrons in ferromagnets, and in 
particular they cannot be used to explain the ob
served5•6 large value of the total cross section for 
inelastic magnetic scattering in ferromagnets at 
high temperatures. 

APPENDIX 

In this appendix, we shall calculate the cross 
section for two-magnon scattering to terms of 
order a-2, for the case where P = p. 

When condition (13) is satisfied, we easily ob
tain from (5) the expression: 

a+1. -1 (p, p) (A.1) 

2 2 2 2F 2() -2W- V0 [ 1 (m•'t"\2] _2 (J J J) =7trol "e '<2"')" -,-:;-jP 1+2+a; 

J1 = foc-a ~ d[L · n (tL) !I p + IX!J. 13 -I p- IX(J. I3 J; (A.2) 
0 

*~+";,0 (p, P) and ;~_2 (p, P) are maximum at P"" p for the 
same reasons that were given for u;1 ,_1 (p, P). 

- I p - tL I ln(P + "IL + I P- IL I )2 
p + <XiJ.- I p- IL I 

+ Q In[< I P -cx11- I - Q) (p + "IL + Q)]2}· (A.3) 
( I P- "IL I + Q) (p + "IL- Q) ' 

00 

Ja = ~ p ~ dtL · (L 3n (tJ.), 
t;~'/. 

(A.4) 

where t is a number such that t « 1, t[31f2 » 
p/a. 

Since. p/ a « {31/2, we get 
co 

J _ 4p p,2 \ x dx + 0 ( -s) 2 2 P. 2 
1 - 7 1:' .) ex -1 IX ::::::; 3ci 7t 1:' p. (A.5) 

0 

It is convenient to split J 2 into two parts, in the 
first of which we integrate from zero to p/ a, and 
in the second from p/ a to t[3tf2• We note that if 
p < [3112, we can, without violating the assumptions 
made about t, choose t so that p is greater 
than tf31/ 2, and can therefore assume that in J 2, 

p is greater than t-t. If we replace n ( t-t) by 
f3t-t-2 in J 2, and introduce the new integration 
variable x = t.t/p, we get: 

(A.6) 

1/e< 

I= 'i _li_x_{ln[2-(cx-1)x]2 +xln[4-(cx-1)2xz]z 
1 ~ x 2+(cx-1)x (cx+1)2x2 

1 

+ V1 +1Xx2 ln [(cx+1)x+2V~]z}; 
(ex+ 1)x-2V1 + cxx2 (A.7) 

t;~'/o/P 

I= (' dx_{In[ (cx+1)2 x~ ]' +xln [2+(cx-1)x]z 
2 ~ x 4-(cx-1)2x2 2-(cx-i)x 

1/e< 

If we make the substitution x = t/a in I1 and then 
expand in powers of 1/ a, we get 

The integral of the second term in 12 is easily 
done and gives 

I~=~ [(1--} In 3) +In"~:"']+ 0 c.~'!.). (A.10) 

In deriving this expression we used the fact that 
t{3t/2 » pa-1. 

The remaining part of integral 12 can be split 
into two terms: 
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I; = I 2 -I~ = I+ + I_; 
(I+~t:'~p-•j'/, 

I±=2 ~ dy-y(y2 - Ifl{ln::~+(Y±I)Inji~_ 1 )2(y±d} 
(I+cc')'i• 

(A.ll) 

We easily find for I+ : 

(I +~t:·~r·>'/, 

I+= ~ , dy2 (y2- If!{- :2 + "'2 (y\ 1) + 0 (oc-a)}. 
(I+a-') /, 

But this expression is smaller in absolute value 
than 4a-2 ln ( at{3if2p-2 ), and can therefore be neg
lected. After substituting t = 2 [ (a -1 )( y -1 )] -t, 

we get for I_ : 

I, 

I_= <X _:__ 1 ~ ~; {1 + [I + (IX- I) frl} 
I, 

X {In l I - t I+-} (IX- I) tIn:~~}; (A.12) 

tl = 2 [(IX- I)(VI + IX~2~p 2- I)P<iS I' (A.13) 

t2 = 2 [(IX- I) (VI + IX-1- l)P~ 4 +O (oc-1). 

From (A.12) and (A.13) we easily get 

(A.14) 

We have only J 3 left to consider. But from (A.4) 
we get: 

00 

4 \ 1 4 
Ja = -;x P~2 } xdx (ex- 1)2 = oc p~2 {-In (1- e-1:') 

~· 
00 l;' 

+ r dx - 1 (-X - I\ - I __!!!:____ (-X -1 )} . 
) ex - 1 ex- 1 .J J ex- 1 ex- 1 
0 0 

and, since t « 1, we have finally 

J 8 2 ( I 1 7t2) a = -- pR - n ~ + -- --
"' t' 2 12 . (A.15) 

Using these formulas, it is easy to get (16). 
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