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New and more general formulas are derived for velocity and temperature discontinuities on 
a gas-wall surface for rarefied gas flows of arbitrary Mach number. The equation for the 
velocity discontinuity is practically the same as that for M « 1; on the other hand, the re
lation for the temperature discontinuity differs markedly from the well-known Maxwell for
mula for a gas at rest near a wall. 

IN previous investigations, even in the most de
tailed, 1 the effects of the slipping of rarefied gases 
along the walls and the temperature discontinuities 
on the gas-wall boundary have been studied only in 
cases corresponding to M « 1. Here M is a di
mensionless quantity, equal to the ratio of the speed 
of flow far from the wall to the speed of sound ( the 
Mach number). Furthermore, there is a great need 
to know the laws governing these effects for flows 
with arbitrary values of M, since the gas dynam
ics of rarefied gases are of considerable interest 
at the present time, principally in connection with 
the problem of the flight of rocket missiles and 
apparatus at the upper levels of the atmosphere. 

The work below had as its aim the solutions of 
these problems. 

1. INITIAL ASSUMPTIONS; THE VELOCITY DIS
TRIBUTION FUNCTION f 

As is well known, 2 the equations of gas dynamics 
preserve their usual form in relation to the expres
sion for the heat flow q11 and the stress tensor TJ.Lv 
if 

Ml/L = M 2/R < 1, (1.1) 

*This work was completed in 1950. 

where l is the length of the molecular mean free 
path, L a characteristic linear dimension of the 
object (or channel) in the flow, and R the Rey
nolds number. q11 and TJ.Lv are in this case ex
pansions in powers of the parameter Ml/L, with 
factors in the form of first, second and higher de
rivatives, with respect to the coordinates xa, of 
the mean velocity u11 and of the temperature T. 

We assume condition (1.1). Then 

( 1 - -) (v2 ) p ,2 U 2Uv + SUv = PVv + qv- "~"Vv!J. + PVv -2 + Cv T , 

(1.2) 

where v J.L is the mean velocity of the macroscopic 
motion of the medium, € is the internal energy of 
the molecule of the gas, and Cy is the specific 
heat at constant volume. 

The laws of conservation of mass, momentum, 
and energy at the gas-wall boundary can be written 
in the following form, if we denote the unit normal 
vector by nv: 

piivnv = (pil:)* n\1) ;)u[l.uvnv == p (u!J.uvrnv, 

p (} U!J.UtLUv + SUv) nv = p (} U!LU!"Uv + SU )" nv. (1.3) 
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In these equations, the asterisk denotes quanti
ties produced by the flow of molecules incident on 
the wall and reflected from it, while the quantities 
without the asterisk refer to the layer of gas in
finitesimally close to the wall. 

The velocity distribution function, which is a 
solution of the Boltzmann equation for the given 
problem, should have the form 

f = f M (1 + ~), ~ ~ I' (1.4) 

f M = (hj .. )'l• exp ( -- h (u 1,- v!J.) (u!J.- v1,)}, (1.5) 

where fM is the well-known Maxwell distribution 
function, 

~=A + B (u 1,- v!J.) (u 1L- Vp.) + C-:,~ (u,- v,) (u~- vr,) 

+ [D + E (u.,- v,J (u~- · v,)] (u~,- v1,) q~. (1.6) 

Furthermore, the conditions of thermodynamic 
equilibrium should be satisfied for f and 1/J at 
each point of the medium and at each instant of 
time: 

~ f du 1du 2du3 = ~ fdN = ~ f M dN = I, 

~ fu,dN = ~ f Mu.,dco = v~, (1. 7) 

~ ~~~. dN = ~ (u,- v,) (u,- v,) dco = ~ a2fdN = ~ a2f" dN. 

The constants A, B, C, D, and E should be 
chosen to satisfy conditions (1. 7) and (1.2). This 
leads to a system of equations for the constants: 

~[A+ Ba2 + C ('tu~~ + "22;; + ":J3~~)1 f" dco = 0, 

~ ~,~~f M (D + Ea2 ) dN = 0, (1. 7a) 

~[A + Ba~ + C (-::u~i + -=22~~ + -=:1:1~~) 1 a2f M dUJ = 0; 

~ ~(A + Ba2 + C-:.,,,~.,2~) f M~!J.~v diil = - "rL'" (1.2a) 

f ~ (JJ + Ea2 ) a2;~ d(u = I. 

In these expressions, the quantities ~f.J. and a2 

are determined by means of (1. 7), while we denote 
by ~~ simply the square of the component ~f.J.' 
and the sum of squares of ~ 01 is written, as usual, 
in the form ~ 01 ~ 01 = a2• 

In order that the quantities A, B, C, ... be 
independent of Tp.v and ~· it is necessary to em
ploy the Stokes hypothesis: 

(1.8) 

satisfaction of which is implied in the choice of the 
distribution function in the form (1.6). 

Carrying out integration in Eqs. (1. 7a) and (1.2a), 
and solving the resultant set of equations, we find 

A= B = 0. C =- 2h2fr,; D = ~ 4h2j~,; E = I. 6 h3/~

(1.9) 

2. VELOCITY AND TEMPERATURE DISCON
TINUITIES ON THE GAS-WALL INTERFACE 

We assume that a part s of the molecules is 
reflected diffusely from the wall with a Maxwellian 
velocity distribution fM:, corresponding to a cer
tain effective temperature T', connected with the 
wall temperature Tw by the Knudsen accomoda
tion coefficient: 

T'- T = rx (T". --- T). (2.1) 

Further, we let the remaining faction of the 
molecules ( 1 - s) be reflected specularly from 
the wall. Then the first of equations (1.3) can be 
written in the form 

+co +co +co 
+ ( 1 - s) ~ ~ ~ f u2d(o = 0, 

-oo -oo -oo 

regarding the normal n to be directed along the 
x2 axis, inside the gas. Or, taking it into account 
that the latter integral is equal to zero, we shall 
have, leaving in what follows, for brevity, one in
tegral with the designation of the limits of integra
tion .with respect to the variable x2: 

"' 0 

~ u2f~ dN + ~ u2f dN = 0. (2.2) 
0 -co 

Further, in accord with the second equation_ of 
(1.3), and considering that 

00 

~ f~u~u2 dN = 0 for rx =!= 2, 
0 

we obtain 

"' --<X> 

~ fu,u2 dN- (I - s) ~ fu~u2 dN = 0, (2.3) 
0 0 

00 00 ...:....._00 

Vu~ dN = s ~ f~u~dN + (I - s) ~ fu~ dco. (2.4) 
0 0 

Finally, the last equation of (1.3) yields: 

"' 
2 [- V~'tx2 + q2] = ps {~ f~u2 (u2 + 2s) dN 

0 

0 

+ ~ f (u2 + 2s) U2d(u}. (2.5) 
-00 
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Equations (2.2) to (2.5) express the boundary 
conditions for the gas dynamic flow of rarefied 
gases. For their formulation in concrete form, 
however, it is necessary to calculate the integrals 
involved, making use of the distribution function f 
found above; in this case we assume for molecules 
reflected with accomodation 

f~ = A (1 + b1a2 + b2a4 + b3a6) e-hu"u". (2.6) 

The coefficients A, bi> b2, ••• are determined 
from the normalization condition J fM dw = 1 and 
fulfilment of Eq. (2.2) and two other relations which 
shall be used later: 

0 

- (1- C() ~ fu2(_zq- + e )dw, (2.7) 

-oo Ol 0 

~ f~u2dw = C( ~ t: ll2 dw- (I - C() ~ fu2dw. (2.8) 
0 0 

Substituting Eq. (1.4) for f in (2.3), we get 

oo+ 
~ f M (~a~2 + Va~2 + o/~a~2 + o/Va~2) dw 

-oo 

-(X) 

+s ~ fM (~a~2 + V"'~2 +o/:;"'~z+o/va~2) dw = 0. 
0 

Multiplying this relation by p and computing the 
corresponding integrals with the help of (1.5) to 
(1.9), we get 

- s ( h ''I• s -r22h'f, 
-· "=a2 + PVaEzS + -2 'ta2 + 0.2 S -l q ---,1- Va = 0, 

rr: J a. 2rr: • 

(2.9) 

where 
0 

~2 =- ~ ~2fMdw = 1/2 Vhrr: = a/4, (2.10) 
-00 

Here a is the mean velocity of the random ther
mal motion of the molecules entering, according 
to the molecular kinetic theory, into the expres
sion for the viscosity 7). 

As is well known, 

h = lj2 (cp- Cv) T = yj2cp (y- 1) T. (2.11) 

Furthermore, we have for the heat-flow vector 
and for the tensor of viscous forces 

(2.12) 

Finally, we introduce the dimensionless number 

(2.13) 

Substituting the values of the corresponding quan
tities 71., qa, etc. from (2.10) to (2.13) in Eq. (2.9), 
and taking it into account that in flow over the wall 
we can always set T22 = 0, we get 

"l ava 0.2 "l aT 
Va. = -y ax;+ (y-1) Pr pT axa. ' (2.14) 

where 

7J/~ = (2/s- 1) (2·'1/pa). (2 .15) 

In these relations, {3 is the coefficient of external 
friction and 1)/{3 is the slipping coefficient. 

There are several theoretical formulas for the 
viscosity coefficient. Apparently, the best of these 
is the Chapman formula: 2 

7J = o.499 raz. (2.16) 

Substitution of this value of 1) in (2.15) gives 

"''I~= 0.998 (2/s- I) l. (2.17) 

According to experimental data, s R~ 0.8 to 1 for 
various surfaces and gases; therefore, h/{3 R~ l. 

Equations (2.14) to (2.17) for the velocity dis
continuity do not contain anything new in compari
son with the expressions obtained earlier in mo
lecular-kinetic theory. Their derivation, given 
above, only furnishes a basis for the possibility 
of using the ordinary formulas for the velocity dis
continuity at a wall at arbitrary values of the Mach 
number M. 

The formulas obtained for the temperature dis
continuity are essentially new, however. With the 
help of Eq. (2.8), we can transform Eq. (2.2) to 
the form: 

"" 0 

~ r:u2dw + ~ fu2dw = 0. 
0 -oo 

Then, in accord with Eq. (2.10), 
00 0 0 

~ t:uz dw = - ~ fu 2 dw =- ~ f"u 2 dw = ~-. (2.18) 
0 -oo -co 

From (2.5) and (2.6) we obtain 

co 

2 (qz- Va'taz) = pSC( {~ f~u2 (u2 + 2zw) dw 
0 

0 

+ ~ fuz (u2 +e) dw}. 
-00 

In correspondence with Eq. (1.4), we can trans
form this equation, considering that v2 = 0, to 
the form 
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(2.19) 

where 

"' 
M1 = ~ f~~·u 2 (u2 + 2zw) dw, (2.20) 

I) 

M2 = ~ f,u 2 (u 2 + 2z) dw, (2.21) 

G 

M:l = ~ f MY ga:;>-~2 + 2;a:;2v, + v,v,q dw. (2.22) 

Calculation of these integrals, making use of 
(2.11) and (2.18), gives 

(2.20a) 

M2 =-a {cpT (y- 1)/y + z/2 + v2/4), (2.22a) 

0 

+ ':22C \ (~~- ~;;;2) ( 1 + a2) f M dw. (2.21a) 
-00 

Substituting the values of M in (2 .19) and taking 
T22 = 0 as before, we get 

From molecular-kinetic theory, 

w ! 3 y- 1) ' 1' ~ 5 -- 3y 
s -e=~c,.- 2 cp-Y- (Tw- )=-LllCp~ 

(2 .23) 

With the help of this relation, the preceding equa
tion is transformed to the form 

I ( 2 \ 0. 8 q a V a Sa ( V2 ) 
( -V-:: q) --1)+------=---.-"C !::.T+---

x o:21 2 \s-:x: it a 4 r P \ cp~J. ' 

(2.24) 

where 

[J. = (y + 1)/y. (2 .25) 
' 

Equation (2.24) determines the value of. the tem
perature discontinuity between the gas and the wall 
for flow past it at Mach numbers M ~ 1. In con
trast with the formula for the velocity discontinuity 
(2.14), it differs essentially from the well-known 
Maxwell formula, which corresponds to the case 
of gas at rest near a wall ( M = 0) and which can 
be obtained by putting v a = 0 in (2.24). 

In the simpler case of two-dimensional flow in 
the x1, x2 plane (which will occur, for example, 
for a plane Prandtl boundary layer ) , we can 

transform Eq. (2.24) [by making use of Eqs. (2.12) 
and (2.13)] to the form 

where 

g = (2jsrx.-1) (4TJ/Pr11.as), 

gl = (3.2 TJl"w'a Pr) (vda), 

(2 .26) 

(2.27) 

(2 .28) 

or, if we use the Chapman formula (2.16) for the 
viscosity, 

g = (2jsrx.- 1) ( 1.996 l/11. Pr), 

g1 = 0.359 v1l/'-!1. Pr a. 
(2.27a) 

(2.28a) 

For computational purposes, it is useful to note 
that with use of boundary-layer theory, we can 
neglect in the formulas for velocity and tempera
ture discontinuities, (2.14) and (2.16), the terms 
containing the derivative 8T /ax, if x1 is directed 
along the flow in the immediate vicinity of the wall. 
In addition, we can, with accuracy sufficient for 
practical purposes, consider JJ. ~ 2 and Pr = 1. 
Then Eq. (2.26) takes the form 

(2.26b) 

which coincides with the known Maxwell formula 
if we replace the ordinary temperature T in it 
by the "throttling" temperature used in gas dynam
ics: 

(2.29) 

Once more, it should be noted that by setting 
v1 = 0 and s = 1, (2.26) and (2.27) reduce to the 
known Maxwell expressions for the temperature 
discontinuity on the gas-wall interface [if the gas 
is at rest relative to the wall ( M = 0 ) ] . 

In conclusion, we point out that instead of (2.26) 
and (2.14) one can easily obtain if necessary more 
general formulas for velocity and temperature dis
continuities by substituting in Eqs. (2.9) and (2.24) 
the expressions for heat flow and the stress ten
sor, 2 taking into account terms of higher order in 
M2/R with higher derivatives. The relations ob
tained by such a method are, however, too cumber
some to cite here. 
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