
1016 Sh. Sh. BASHKIROV 

Pa = 0.5· Io-s, p~ ~ 0.45· 10-8 , py = 0.34· Io-s sec. 

In weak fields (H~« HI) we get p = 0.2·10-8 sec. 
For a polycrystalline specimen 

P = 1/a (Pa + Ps + py). 

The resulting dependence of the relaxation 
time on the orientation of the CuS04 • 5H20 crystal 
in an external magnetic field H0 agrees very well 
with the, experimental results obtained by Volokhova. 9 

With a certain approximation the dependence of p 
on the absolute value of H0 also agrees with the 
results obtained by Volokhova. The temperature 
dependence of p is determined by the integral 18• 

If the constant A is isotropic, then the proba­
bility of the relaxation transition Ar- (7) will also 
be isotropic. The anisotropy of p will be deter­
mined in this case by the anisotropy of the g -fac­
tor only. With gil = 2.4 and g.L = 2.1 the com­
puted values of p for H0 directed along the three 
magnetic axes of the crystal differ by no more 
than 4%, i.e., it is difficult to attribute to the aniso­
tropy of the g -factor even a comparatively small 
( 10 to 20%) anisotropy of p as observed in the 
crystals of Tutton's copper salts.9 It may be pre­
sumed that the constant A of the spin-orbit coup­
ling is also anisotropic here, the more so since 
these salts are similar to CuS04 • 5H20 in their 
crystalline structure. 

In conclusion, the author wishes to thankS. A. 
Al' tshuler for suggesting this work and for valu­
able advice. 
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By introducing a certain "anisotropy function" a good description of the flow of a gas can be 
obtained, even at pressures at which only empirical formulas have been used hitherto. Fur­
thermore, the term corresponding to the slipping of the gas relative to the walls is obtained 
automatically, without any additional hypotheses; the same is true of the minimum rate of 
flow at intermediate pressures. Our final formula is qualitatively correct at all pressures, 
including intermediate ones. 

IT is well known that hydrodynamics cannot pro­
vide the solution of the problem of the flow of gases 
at low pressures. Knudsen1 succeeded in establish-

ing the correct laws of flow at such pressures by 
using kinetic theory. In an intermediate range of 
pressures, however, neither hydrodynamics nor 
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the kinetic theory as developed by Knudsen can 
give correct results. 

To obtain the laws of flow at arbitrary pres­
sures one must resort to interpolation, as was 
done by Knudsen. None of these formulas, how­
ever, gives an explanation of the laws of flow at 
intermediate pressures. 

Pollard and Present2 developed a theory for 
small pressures, in which they took account not 
only of collisions ofthe molecules with the walls 
but also of collisions between molecules. These 
authors assume that out of the ( nv /A.) d mole­
cules that collide during unit time in the volume 
dT, the number that leave the volume element in 
the solid angle dw is independent of its orientation 
relative to the axis of the tube and is given by 

(nv; t..) d-t dw 1 47r. (1) 

Consequently the method of Pollard and Present 
amounts essentially to a kinetic theory of diffu­
sion in tubes. Their results for the diffusion of 
gases at low pressures are in better agreement 
with experimental data than the results of the or­
dinary kinetic theory of gases. 

Hiby and Pahl3- 5 have shown that the collision 
process in a flowing gas gives rise to an anisotropy 
in the distribution of the molecules that have had 
collisions. The result is an additional current due 
to this anisotropy. They hav.e given a purely kinetic 
formulation of the problem of gas flow. In this for­
mulation, however, the calculations are extraor­
dinarily complicated, so that these authors have 
in fact had to confine themselves to obtaining a 
second-order correction to the calculations of 
Pollard and Present. The predictions of the theory 
of Hiby and Pahl are in good agreement with the 
results of experiments at low pressures. 

We attempt below to give a unified phenomeno­
logical approach to the problem of gaseous flow, 
which leads to good results at both low and ordinary 
pressures. The basis of our arguments is the meth­
od of Pollard and Present, to which we add certain 
plausible physical assumptions. 

Let us consider a very long cylindrical tube, be­
tween the ends of which there is a pressure drop 
that is extremely small in comparison with the av­
erage pressure in the tube. Our hypothesis is that 
the number of molecules leaving the volume ele­
ment dT in the tube in the solid angle dw per unit 
time is given by 

where A -l n (X) vdTdw/ 471' is the isotropic contri­
bution and fa is a function that characterizes the 

FIG. 1 

anisotropy and depends on: (a) the density n ( x) 
of the gas in dT, (b) the gradient of the density 
along the axis of the tube, dn/dx, (c) the distance 
r between dT and the axis of the tube, (d) the 
angle lf! between the axis of the solid angle dw 
and the axis of the tube, and (e) a specific molecu­
lar quantity sp (see Fig. 1). 

The expression given above can be written in 
the form 

In order to obtain the explicit form of the function 
fa we make use of the characteristic data of our 
problem. Since there is a small difference of pres­
sure between the ends of the tube, fa can be ex­
panded in a power series in dn/dx, in which we 
keep only the first two terms. If there is no den­
sity gradient, the anisotropy function is zero and 
the first term in the expansion is zero. Thus we 
have 

If we assume that the molecules are diffusely 
reflected by the walls, then we can suppose that 
the anisotropy function is zero or close to zero 
at r = R. The maximum anisotropy is attained at 
the axis of the tube, so that if we expand f(r, 1/J, 
n, Sp) in powers of r we get the following form: 

f= 1/2(r2-R2){I(<f, n, sp). 

We shall assume that the dependence of f on lf! 
is such that a larger number of molecules leaves 
dT in the direction of flow of the gas than in the 
opposite direction. This means that f is positive 

• for values of lf! which correspond to the direction 
of the flow and is negative for the opposite direc­
tion. In relation to the molecules that emerge af­
ter colliding, the flowing gas acts like a semitrans­
parent mirror which makes the majority of these 
molecules leave the volume element in the direc­
tion of the flow. We shall assume that in the per­
pendicular direction the distribution remains un­
changed as compared with the isotropic case. From 
the multitude of angular functions that satisfy the 
requirements given above, we _choose the simplest: 

f I(<f, n, sp) = f 2 (n, sp) cos <f. 
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FIG. 2 

( It is obvious that in a rigorous treatment one would 
have to use Fourier series, but for our purpose the 
approximation just made is satisfactory. ) 

With a correct choice of f2 ( n, Sp), the aniso­
tropy function increases with increasing pressure. 
(It is obvious that at very small pressures the 
anisotropy vanishes, and that it increases as the 
pressure is raised.) We set 

f2 (n, sp) = kjf.. 

and shall show that this choice leads to results in 
agreement with the experimental data. Let us con­
sider the tube shown in Fig. 2. The number of 
molecules that traverse the element of area dA 
of a cross-section in unit time is given by the ex­
pression of Pollard and Present with an added 
anisotropic term: 

(3) 

Choosing spherical coordinates with the center 
at the point dA and remembering that for very 
long tubes dn/ dx is practically constant, we get 

dN = dN1s· 

_ 27t 1t s,·sin 1./J 

+ kdA 1Ji 4~ ~ dtp ~ d~ cos2 ~sin ~ ~ ,, --;:-. R." e-P/i.d?. 
0 0 

Using the notations of Fig. 2 we have 

r 2 = r~ + p2 sin2 ~- 2r0p sin~ cos&, 

R2 = r~ + s2 - 2r 0s cos & . 

Substituting this into Eq. (4) and integratin~ with 
respect to cp , we get 

dN = dN18 + kdA~-f~ d~cos2 ~sin~ x 
0 

s/sln<jl 

(4) 

X ~ (r~- R2 + p2 sin2 ~- 2r0psin ~cos&) ')..-2e-Pii.dp. 
0 (5) 

In the case of a small pressure drop along the 
tube we can regard the mean free path as approxi­
mately constant, so that in Eq. (5) we may carry 
out the integration with respect to p: 

N=Nrs 

+ ~ ~~ dA ~ cos2 ~sin~ {( '~--;_ R. 2
- 2r0 sin~ cos & + 2/.. sin2 ~) 

0 

+ (2r 0 sin~ cos.&- 2s sin~- 2/.. sin2 ~) e-•li.sin<ll} d~. 

At large pressures, for which R »A, we keep 
only the first term in Eq. (6). Then 

N kv dn (' (' dA C '~ - R.• 2 • R.•"P:kv dn 
~ 4 dx ~ ~ .) ---~.- cos ~ sm ~ d~ = ~- dx. 

0 

(6) 

If we take k ~ % (v2/V2 ) ~ ;,%, then this formula 
reduces to Poiseuille's law; this shows that the 
choice of the anisotropy function was correctly 
made. With this value of k we have in the gen­
eral case 

- " '2- R_2 

+ i ~ v ~ ~ dA ~ cos2 ~sin ~ d~ [ (-0--~.- - 2r 0 sin ~ cos & 
0 

+ 2/.. sin2 ~) + (2r0 sin~ cos & - 2s sin~- 2/.. sin2 ~) e-•Ji.sln<li]. 

To perform the integration we choose a coordinate 
system in the transverse section in the way shown 
in Fig. 3. We have here 

1t 2Rsina: 

A = ~ drt. ~ sds; r cos & = s - R sin rt. 
0 0 

and for N we now have 

N = N _ [1':R. 4v 1':R 3v _ J.-p:R2v] t}r!_ 
Is 81. + 12 5 dx 

" + ~~ v ~ ~ dA ~ cos2 ~sin~(- 2R sin ~sin rt.- 2f.sin2 ~) 
0 

X exp (- sjf. sin~) dlj>. 

Changing the order of the integrations, we bring 
the last term into the form 

FIG. 3 
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n n 2R~incx 

~ :v \ da. ~ cos2 ~sin~( - 2Rsina. sin~ - 21.. sin2 ~) ~ se-s/'Asln<Pds. 
0 0 0 

Integrating over ds, we reduce the problem to 
the evaluation of a double integral, which can only 
be done numerically. 

FIG. 4. 1 - observed rate of flow as function of total pres­
sure gradient (Knudsen); 2 - our results; 3 - the anisotropic 
part of the rate of flow; 4 - rate of flow obtained by Pollard 
and Present. 

At densities such that "A./2 ;::: R, a good approxi­
mation to the integral is obtained by expanding the 
exponential function in power series and integrating 
numerically over the range 'IT/10 ::s: 1/J ::s: 'IT- 'IT/10. 
In this case we get for the "anisotropic part" of 

the rate of flow the values shown by the dotted 
curve. If we add to it the values given by the iso­
tropic term, we get a rate of flow in good qualita­
tive agreement with Knudsen's data, 1 which are 
shown by the dashed curve. 

Thus we have obtained a law which automatic­
ally leads to the presence of slip ( smaller than the 
Maxwellian slip) and of a minimum rate of flow, 
and which is in good agreement with experimental 
data. 
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General formulas are obtained for the propagation of an electromagnetic field in a semi-infinite, 
homogeneous, anisotropic medium with spatial dispersion. The propagation of a transverse 
wave along a magnetic field in a plasma is investigated, taking account of the thermal motion 
of the electrons. Strong absorption of the field is found in the region for which Cerenkov radia­
tion is possible in the plasma. 

IN the present paper we consider the penetration 
of an electromagnetic field into a semi-infinite, 
homogeneous, anisotropic medium with spatial dis­
persion. This problem is an extension of the sec-

ond part of the well-known paper by Landau 1 in 
which the penetration of a longitudinal electric 
field into an isotropic plasma was treated. 

In Sec. 1 we obtain general formulas which, in 




