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A theoretical calculation of the spin-lattice relaxation time in hydrated salts of divalent copper 
is carried out. The anisotropy of the relaxation time experimentally observed in CuS04 • 5H20 
crystals can be explained by taking into account the anisotropy of the spin-orbit interaction in 
the cu++ ion due to partially covalent nature of the copper ion bonds in the crystal. 

1. INTRODUCTION 

HYDRA TED salts of divalent copper form a group 
of paramagnets whose magnetic properties are com­
paratively well known: detailed examinations of the 
static susceptibility and paramagnetic resonance 
spectra have been carried out for a number of these 
salts, and experimental data on the spin-lattice re­
laxation are on hand. We shall dwell below on those 
results that have been utilized for our calculations. 

In the crystals of hydrated copper salts the water 
molecules that surround a magnetic ion form, at 
the point where the magnetic ion is located, an elec­
tric field of cubic symmetry on which is superim­
posed a comparatively weak field of lower symme­
try (tetragonal, trigonal, or rhombic). We shall 
now examine the Tutton's copper salts and the hy­
drated copper sulfate CuS04 • 5H20. The unit cells 
of the crystals of the above salts contain two cu++ 
ions each. The internal field is of tetragonal, al­
most cubic, symmetry. The angle between the 
tetragonal axes is 82° for two magnetic ions of a 
unit cell of the crystal. 1•2 

The basic state of the cu++ ion is the 2D state. 
The ground orbital level of the cu++ ion is split 
up into a triplet and a doublet by the cubical field, 
the doublet lying lower. The orbital doublet is 
split up into two single levels by the tetragonal 
field. Since the spin is S = Y2, the lower level is 

a~= 
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Scheme of the successive 
splitting of the ground level of 
a cu++ ion under the influence 
of: I - an.electric field of 
cubic symmetry; II - tetragonal 
symmetry; Ill - levels of the 
electron spin in the external 
magnetic field. 

a Kramer doublet whose degeneracy is removed 
by the external magnetic field (see diagram). Op­
tical examinations have shown that the magnitude 
.6.. of the splitting due by the cubical component of 
the field is 12,300 cm-1 (references 1, 3, 4). Re­
liable data on the magnitude o of the splitting due 
to the tetragonal component of the field are lacking. 
Following Owen's4 calculations, we assume o = 
1400 em - 1• In accordance with the diagram, we 
shall designate the two possible spin orientations 
in' an external magnetic field H by + and - signs. 

The paramagnetic-resonance spectra observed 
in crystals of Tutton's salts have been interpreted 
with g -factor values g 11 = 2.4 and g.i = 2.1 
(Ref. 1).* Here gil and g.i characterize the 

*More exact values of the g-factor for different Tutton's 
salts are given in the paper by Bleany et al. 5 
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splitting of the lower Kramer doublet by a magnetic 
field directed, respectively, parallel and perpendic­
ular to the axis of symmetry of the internal crystal 
field. It follows from the theory of electron mag­
netic resonance spectra that a deviation of the g -
factor value from the pure spin value is caused by 
the residual orbital magnetism of the lower orbital 
singlet of order A{3/ D., where A is the spin-orbit 
interaction constant. However, calculations of cor­
rections to the g -factor of the A/ D. type have led 
to values of g 11 and gJ. which differ from the 
measured ones. It was therefore assumed that the 
value of the constant A in the crystals of Tutton's 
salts differs from its value for the free cu++ ion 
(A = - 829 em - 1 ) and equals - 695 em - 1 (refer­
ence 1). 

The measured g -factor values for the cu++ ion 
in CuS04 • 5H20 crystals are g 11 = 2.47 and gJ. = 
2.06. To explain the experimentally-obtained g­
factor values it is necessary to assume the inten­
sities of the tetragonal or rhombic components of 
the internal crystal field to be very great (of the 
same order as the cubical one )2, an assumption 
not confirmed by the results of the optical investi­
gations. Abe and Ono3 offer another explanation. 
They assume that in the CuS04 • 5H20 crystals the 
constant A of the spin-orbit bond is an anisotropic 
quantity with components Au= -700 cm-1 and AJ. 
= -370 cm-1. 

The difference between the value of A in crys­
tals and its value for the free cu++ ion, and the 
anisotropic character of this value in CuS04 • 5H20 
crystals, can be attributed to the partially covalent 
character of the cu++ ion bond with the nearest 
atoms of oxygen. A detailed analysis of the influ­
ence of covalent bonds in a crystal on the magni­
tude of the g -factor can be found in the works of 
Owen4 and Stevens. 6 

It was established by Kronig7 and Van Vleck8 

that in the hydrated salts of ions of the iron group 
the spin-lattice interaction is brought about chiefly 
by modulation of the internal crystal field by the 
thermal vibrations of the crystal lattice. Only the 
orbital motions of the electrons are directly influ­
enced by the electric field. The interaction of the 
spin with the electric field is effected through the 
coupling of the spin with the orbit. The dependence 
of the spin-lattice relaxation time on the orienta­
tion of the crystal in the external magnetic field, 
found by Volokhova9 in CuS04 • 5H20 crystals, is 
therefore not unexpected. The anisotropic charac­
ter of the constant A is expected to entail an anis­
otropy of the relaxation time. 

We have calculated the spin-lattice relaxation 
time p and determined that the anisotropy of p 

detected in CuS04 • 5H20 crystals can be explained 
by anisotropy of the constant A. The expression 
obtained by us for p can also be applied to other 
salts of the cu++ ion by assuming Au = AJ.· 

2. CALCULATION OF THE RELAXATION TIME 

A system of orbital levels of the cu++ ion in 
the electric field of the crystal with the above men­
tioned symmetry can be characterized by the fol­
lowing wave functions: 1•10 

'Fa = (~z + ~-2)/V2, 'Fb = ~o, 'Fe= i (~2- ~-2)/V2, 

'Fd = i (~l + ~-I)!V2, 'Fe= (~1- ~-l)!V2. (1) 

The indices a, b, c, d, e correspond to the dia­
gram. 

For a Hamiltonian that takes into account the 
interaction of the paramagnetic ion with the lattice 
vibrations we use the expression of Kronig, 7 which 
is the linear term of a series expansion of the 
electric potential of the crystal in terms of normal 
lattice vibrations. For the sake of convenience, 
we shall write it in a somewhat modified form and 
with different symbols: 

5't'<1> = f [(3z2 - r 2) f1 + 2 (x2 - Y2) f2 

- 2xyf3 - 2xzf4 - 2yzf6 J, (2) 

f = 8ef1-a-5q<I>, 
f 2 = Ux)'x- UyAy, 

f4 = UzAx + UxAz, 

f1 = UzAz- 2/aUxAx- 2/aUyAy, 
fa= UyAx + UxAy, 

f 5 = u;A.y + UyAz. 

Here ux, uy, Uz and Ax, Ay, Az are cosines de­
termining the directions of polarization and the 
velocities of elastic-wave propagation, respectively; 
q is the normal coordinate, p, is the effective di­
pole moment of the water molecule, <jJ = 27Tav/c, 
c is the velocity of sound, a is the lattice constant; 
and e is the electron charge. 

With the aid of the eigenfunctions (1) for ma­
trix elements JC(1), we obtain the following expres­
sions: 

<a 1 b > = 4ll3r;.r2ff2, 

<b lc> = 2ll3r;.r2ffa, <ale>= 0, 

<a!d> =-V3<bid> = -3<J.r2 ff6, 

<a Je> = V3 <b je > =- 3cxr2ff4, 

(3) 

where a = %1 and r2 is the mean square of the 
distance of the 3d -electron from the nucleus. 

Choosing the direction of the magnetic field H 
as the axis of quantization of the electron spin, we 
write the operator of the spin-orbit coupling in the 
following form: 

x' -x' .Y~ ,z' 
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Here lxx', lxy' ... are the cosines of the angles 
between the axes xyz and x'y' z', where xyz is 
the coordinate system connected with the symme­
try axes of the internal crystal field, and the z' 
axis is parallel to H. 

Let us determine the matrix elements of JC so 
needed for the subsequent computations: 

<a I C > = 2i/, 11 (1 zz'Sz• + lzy'Sy• + lzx'Sx•), 

<bid>= vJ<ald> 
= i VJ!,j_ (lxz'Sz• + fxy•Sy• + lxx•Sx•), 

< b I e > = - V3 < a J e > 
= i lf3 A j_ (l yz'Sz• + l yy•Sy• + l yx•Sx•). 

(5) 

Let us examine the relaxation that results from 
the Raman scattering of phonons. This case is de­
cisive even at comparatively low temperatures. 

Since the splitting factors 1::. and o are suffi­
ciently large ( 1::., o » kT ), relaxation will tal.):e 
place only because of transitions between the two 
lower spin levels. To determine the probability 
of transition a, + - a, - due to Raman scattering 
of phonons, it is necessary to obtain for the per­
turbation energy a matrix element of the type 
JC(a, +, n, n'; a, -, n-1, n'+1) where n and 
n' are quantum numbers pertaining to the absorbed 
and emitted quanta of the elastic vibrations repec­
tively. The latter may be obtained in the third 
approximation with the aid of expressions (2) and 
(4), which we will regard as a perturbation. It is 
necessary to take into consideration that 1::. » o 
and for this reason we must choose from among 
all the terms of JC' those in which the next near­
est orbital level b is used as one of the interme­
diate states. 

Taking this into account we obtain: 

:lt' = 
~ [P+(n, n', IX) -P- (n', n, IX) + p- (n',n, IX) -P+(n, n', IX)]+ F+(n,n', 1X)-F(n', n, IX)+ r (n', n, IX)- F+(n, n', IX)] 

(-Ll)(-3+hv) (-Ll)(-3-hv') (-ll+hv)(-3+hv) (-Ll-hv')(-3-hv') ' 
a-c,d,e 

P<"7z.n',,.! =<a, +I :l'tso loc,-> <oc, n I (7t(l) I b, n =F I> <b, n'l :7t<1>la,n'± 1>, 

Ffiz.n',d) =<a, n j :7t<1> I b, n =F 1> <b, + !S't'so loc. - ><oc, n'l:l't(l)l a, n'± 1>. 

(6) 

We next take it into account that hv « o and con­
sider the frequencies v and v' of the emitted 
and absorbed phonons to be equal (this is permis­
sible if gj3H « kT). 

The following expression is then obtained in the 
usual way8 for the probability of relaxation: 

Here D is the crystal density, cz and Ct the 
propagation velocities of longitudinal and trans­
verse elastic waves and ® the characteristic 
De bye temperature. 

According to the Casimir and DuPre thermo­
dynamic theory of paramagnetic relaxation, 11 the 
relaxation time is p = 27TCH I a, where CH is 
the heat capacity of the spin system in the pres­
ence of a constant magnetic field H, while a is 
the coefficient of thermal conductivity between the 
spin system and the lattice. Using for CH and 
a the relations given by Al' tshuler12 and averag­
ing over the internal magnetic fields with account 
of the anisotropy of the g -factor, we obtain: 

g~ = g~ cos2 cp + g3_ sin2 cp, gi = 1/3 (lu + 2g3_), (8) 

where Hi is the effective internal magnetic field, 
H0 the intensity of the external magnetic field, and 
cp the angle between H0 and the symmetry axis of 
the electric field of the crystal z. 

To illustrate the obtained angle dependence, we 
shall determine the numerical value of p for a 
CuS04 • 5H20 crystal. 

Let us evaluate the constants in (8). The values 
of 1::., o, A. 11, A.L have been given in the first part 
of this paper. Assuming JJ. = 2 x 10-18 cgs esu and 
using the formula4 1::. = 25eJJ.r" /3a6, we obtain 
a = 2.1 x 10-a em. We then assume cz = ct = 2.5 
x 105 em/sec and ® = 100° K. 

Let us determine the values of p for the direc­
tions of the external magnetic field that correspond 
to the angles cpa = 41 o, cp13 = 49° and qJy = 90° 
(principal magnetic axes of the crystal) at T = 
290°K. In strong magnetic fields ( H~ » Hf) we 
have* 

*Considering that the values of the constants are only ap­
proximately known, it is sensible to speak only of the order of 
magnitude of p. Exact values of p are given as illustration of 
the angle dependences obtained. 
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Pa = 0.5· Io-s, p~ ~ 0.45· 10-8 , py = 0.34· Io-s sec. 

In weak fields (H~« HI) we get p = 0.2·10-8 sec. 
For a polycrystalline specimen 

P = 1/a (Pa + Ps + py). 

The resulting dependence of the relaxation 
time on the orientation of the CuS04 • 5H20 crystal 
in an external magnetic field H0 agrees very well 
with the, experimental results obtained by Volokhova. 9 

With a certain approximation the dependence of p 
on the absolute value of H0 also agrees with the 
results obtained by Volokhova. The temperature 
dependence of p is determined by the integral 18• 

If the constant A is isotropic, then the proba­
bility of the relaxation transition Ar- (7) will also 
be isotropic. The anisotropy of p will be deter­
mined in this case by the anisotropy of the g -fac­
tor only. With gil = 2.4 and g.L = 2.1 the com­
puted values of p for H0 directed along the three 
magnetic axes of the crystal differ by no more 
than 4%, i.e., it is difficult to attribute to the aniso­
tropy of the g -factor even a comparatively small 
( 10 to 20%) anisotropy of p as observed in the 
crystals of Tutton's copper salts.9 It may be pre­
sumed that the constant A of the spin-orbit coup­
ling is also anisotropic here, the more so since 
these salts are similar to CuS04 • 5H20 in their 
crystalline structure. 

In conclusion, the author wishes to thankS. A. 
Al' tshuler for suggesting this work and for valu­
able advice. 
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By introducing a certain "anisotropy function" a good description of the flow of a gas can be 
obtained, even at pressures at which only empirical formulas have been used hitherto. Fur­
thermore, the term corresponding to the slipping of the gas relative to the walls is obtained 
automatically, without any additional hypotheses; the same is true of the minimum rate of 
flow at intermediate pressures. Our final formula is qualitatively correct at all pressures, 
including intermediate ones. 

IT is well known that hydrodynamics cannot pro­
vide the solution of the problem of the flow of gases 
at low pressures. Knudsen1 succeeded in establish-

ing the correct laws of flow at such pressures by 
using kinetic theory. In an intermediate range of 
pressures, however, neither hydrodynamics nor 




