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This equation agrees with the result that Frohlich 
obtained by using perturbation theory. 

Equation (34) shows that v0 > 0 for all values 
of ::\, and the rearrangement of the Fermi distri
bution which Frohlich predicted does not occur. 

It follows from (30) that for ::\0 "' 1 the excita
tion attenuation equals the excitation energy in 
order of magnitude for TJ "' 1, i.e., for the excita
tion energy 

With further increase of the excitation energy, the 
attenuation ceases to increase and becomes smal
ler than the excitation energy. Thus for ::\0 "' 1 
electron excitations in the region Ep1p2 "' w0 can
not be described by means of quasi-particles. 

1 L. N. Cooper, Phys. Rev. 104, 1189 (1956); 
Bardeen, Cooper and Schrieffer, Phys. Rev. 106, 
162 (1957); N. N. Bogoliubov, J. Exptl. Theoret. 
Phys. (U.S.S.R.) 34, 58 (1958), Soviet Phys. JETP 
7, 41 (1958); L. P. Gor'kov, J. Exptl. Theoret. 
Phys. (U.S.S.R.) 34, 735 (1958), Soviet Phys. JETP 
7, 505 (1958). 

2 H. Frohlich, Phys. Rev. 79, 845 (1950). 
3 v. M. Galitskii and A. B. Migdal, J. Exptl. 

Theoret. Phys. (U.S.S.R.) 34, 139 (1958), Soviet 
Phys. JETP 7, 96 (1958). 
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Radiation-cooling wave of air accompanied by a large temperature drop, is considered. It is 
shown that, the radiation is always from the lower edge of the wave, regardless of the value 
of the upper temperature, and that the radiation transfer inside a strong wave has the charac
ter of radiant heat conduction. The strong-wave mode with adiabatic cooling is considered. 

IN the first part of this work (reference 1)* we enough to either aTf or to a~. In this article we 
have described qualitatively the cooling of a large present the theory of a strong CW, in which the 
volume of hot air by radiation. We have found in upper temperature can be unlimited. The funda-
this case that a unique temperature profile is de- mental problem consists obviously of determining 
veloped in the air in the form of a step or a cooling the radiation flux from the front of the CW to in
wave (CW) propagating towards the hotter air. The finity. Another problem is to find the temperature 
air in the wave cools down from a high temperature distribution in the front of the CW. 
T1 to a lower temperature T2• At the lower tem
perature T2 the air becomes transparent, i.e., 
stops absorbing and emitting radiation. 

In reference 1 we have considered the limiting 
case of a weak CW, in which the upper and lower 
temperatures T1 and T2 are not greatly differ
ent, and consequently the flux from the CW is close 

*Henceforth, when referring to the formulas of the first part 
of this article, we shall precede the number of the formula by I 
[e. g. (1.4), (1. 10)]. 

1. DETERMINATION OF THE RADIATION FLUX 
FROM THE FRONT OF THE COOLING WAVE 

It was indicated in reference 1 that to find the 
stationary mode of the CW it is necessary to em
ploy one of two procedures. In the first we intro
duce a constant adiabatic-cooling term into the 
energy equation. In the second we determine at 
the very outset the transparency temperature T 2, 

using formula (1.4). We then assume that when 
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T < T2 the air is absolutely transparent (l = oo), 
thereby excluding from consideration the region 
of air already cooled by the radiation, which ab
sorbs the light rather weakly. 

The first procedure gives a more complete 
picture of the temperature distribution, since it 
permits an investigation of the course of the tern
perature in the cooled air and accounts for the ab
sorption of light in this air. It leads, however, to 
excessive mathematical complications in the analy
sis of the temperature profile inside the CW (i.e., 
at temperatures above the transparency tempera
ture) and in the determination of the flux from the 
front of the CW. Meanwhile, adiabatic cooling 
plays a very insignificant role inside the CW. It 
is therefore preferable to consider the internal 
structure of the CW by using the second procedure. 
Here the energy equation (I.6) becomes 

dT dS dT dS 
UP!Cp dx + die = 0 or up1cp d-r + ih = 0, (1) 

and its integral becomes 

uplcP (T1- T) = S. (2) 

Referring (2) to the lower edge of the CW, we ob
tain an equation for the energy balance in the CW 

(3) 

The most general considerations show that the 
flux S2 from the front of the CW can be bounded 
both from above and from below. 

Let us consider the lower edge of the CW, 
where the temperatures are close to T2. Accord
ing to the condition assumed by us, the air is not 
cooled at any point of the wave to a temperature 
below T2, for it stops absorbing and radiating 
light when T < T 2. Consequently, once it reaches 
a temperature T2, the air cannot be cooled fur
ther, so that T2 is the lowest of all possible tem
peratures in the wave. Therefore, dT/d ::::: 0 at 
the edge of the CW, and from (1) we have dS/dT 
::s 0. It follows from (I.ll) that the radiation den
sity at the edge of the CW is less than the equi
librium value, Ueq2 = 4aT~/c. Therefore, in the 
diffusion approximation, the effective temperature 
of the radiation going to "infinity" from the boun
dary of the CW is determined by the formula 

(4) 

and cannot be lower than the lowest temperature 
T 2 in the CW. Consequently, the flux S2 and the 
effective temperature T eff remain within very 
narrow limits: 

(5) 

Thus, regardless of the amplitude of the CW, 
which can be characterized by the ratio TtfT2, 

(6) 

no matter how high the upper temperature, it is 
always the lower edge of the CW that radiates. 
This conclusion follows from the stationary nature 
of the profile of the CW. 

The radiation from the surface of a heated body 
bordering on a transparent region is generated in 
a surface layer of optical thickness T on the order 
of several units, since the quanta produced in the 
deeper layers are almost all absorbed in the outer 
layer. The effective radiation temperature T eff 
is obviously equal to a certain mean temperature 
of the radiating layer. It follows from formula (6) 
that the temperature cannot vary much in a radi
ating layer with an optical thickness on the order 
of several units. This is the condition for the ex
istence of a local thermodynamic equilibrium be
tween the radiation and matter, or for the existence 
of radiant heat conduction. The greater the am
plitude of the CW, i.e., the closer U2 is to Ueq2 
and the closer S2 is to 2aTt the better is this 
condition satisfied. 

In fact, if the change in temperature in the radi
ating layer is of the order T2, then the change in 
flux in this layer, according to (2), is I.D-1 ...... up1cpT2. 
However, in a strong wave, according to (3), 82 "' 
up1cpT11 since T2 « T1. It is then possible, with 
the aid of (I.ll) and (5), to estimate also the rela
tive deviation of the radiation density U from the 
equilibrium value Ueq 

( Ueq- U) 1 (dS) ---u;;;; 2 = - cUeq2 lh 2' 

Since T ...... 1, in the radiating layer, the deriva
tive ( dS/dT h is on the order of j.D.Sj and 

( u.,q-Ul ~IMI~~~~~. 
Ueq 12 cUeq• cUeq2T1 T1 

Inasmuch as the flux in the radiating layer of a 
strong CW is almost constant, j.D.Sj/82 "' T2/T1 
« 1, the situation on the lower edge of a strong 
CW is quite analogous to the situation in photo
spheres of stationary stars. The problem of de
termining the connection between the flux S2 with 
the transparency temperature T 2 in an exact cal
culation of the angular distribution of the radiation 
is equivalent, in the limit of the strong. CW, to the 
well-known Milne problem,2 the exact solution of 
which 

(7) 
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differs only little from the diffusion solution adopted 
by us 

(8) 

2. TEMPERATURE DISTRIBUTION IN THE COOL
ING WAVE 

It was shown above that the radiation density is 
quite close to equilibrium at the lower edge of a 
strong CW. It is natural to assume that the local 
equilibrium extends over the entire wave, and to 
put U ::::l Ueq in Eq. (1.12): 

c di{q 1GaT3 dT s = 3 ([;" = -3- d-e • (9) 

Inserting the flux (9) into the energy integral (2), 
we obtain an equation for the temperature 

dT /d-e= 3up1cp (T1 - T) fl6aP, (10) 

from which it is seen that, the derivative dT/dT 
and, consequently, the deviation from the condition 
of local equilibrium, diminish monotonically with 
increasing temperature as the distance from the 
lower edge of the CW increases. Thus, the energy 
transferred by radiation in a strong CW has the 
character of radiant heat conduction. This indeed 
proves the correctness of the method we have used 
to average the free path over the spectrum2 inside 
the CW (see reference 1). 

Equation (10) is integrated by quadratures and 
gives the temperature profile in the CW 

(11) 

where 

. q (t) = (t -· t2) [1 + 1/2 (t + t2) + 1/3 (t2 + tt2 + t~)]; 
(11') 

-ce=8(1-t2)/M, i=T/Tv f2=T2/T1. 

Near the lower edge T ,..... T2, so that T « T1 in a 
strong CW. The numerator of the right half of (10) 
can then be replaced with the aid of (3) and (8), 
yielding the approximate solution at the lower edge 
of the wave 

(12) 

This expression, naturally, coincides with the 
diffusion solution of the Milne problem. 

Tlie asymptotic form of the profile for T » T e 
can be obtained by putting q ( t) ::::l q ( 1 ) in formula 
(11). When t2 « 1, this quantity is 11/ 6 • From the 
formula obtained thereby it follows that Te is fue 
effective optical thickness of the CW. 

If we extrapolate the approximate formula (12) 
all the way to the upper temperature T 1, the op-

tical thickness of the CW becomes approximately 
four times smaller than Te· According to (11') 
the optical thickness of the CW increases very 
rapidly with increasing amplitude of the CW [as 
( T 1 /T 2 )4 ] • Figure 1 shows the distribution of 
t(T) for t2 = 0.2. 

Let us find now the temperature distribution 
along the geometric coordinate x. We place the 
origin of coordinates at the lower edge of the wave, 
where T = T2 and T = 0. Rewriting Eq. (1.10) in 
terms of a new variable temperature instead of 
the optical thickness T, and substituting dT/dT 
according to formula (10), we obtain with the aid 
of expressions (3) and (8) 

~ T 
_X = \ l (T) drt = 8 (T,- T 2) \ l (T) TSdT. (13) 

~ 3T4 .\ T 1 -T 
o 2 r2 

At temperatures not too close to the upper tern
perature T1, it is possible to put in (13) approxi
mately T1 - T:::::: T1 - T2• Inserting into (13) the 
free path obtained from formula (1.3),* we obtain 

z, 
_.!....- ~ 7 \ z-z, dz - I - I · l - l (T ) 

12 - 3 z2 .) e zs ' z - kT ' z2 -- kT" ' 2 - 2 • 

z (14) 

Formula .(14) confirms the premise of reference 1, 
that the temperaturEl in the CW has a sharp step 
on the high-temperature side. Figure 2 shows the 
distribution of T ( x) on the lower edge, as given 
by (14). 

rfr, 
--------------- 1 

J z 

,. 

4 
.____:c__,_ _ _._____c:=o...J/0 

O.J 

FIG. 2. T2 = 10,000° 

*According to (1.3), l- (T2/p) exp [1/kT] .. As a conse
quence of the constant pressure in the CW (see reference 1), we 
have p - T"' and l - T3 exp [1/kT]. 
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FIG. 3. T, = 40,000°, 
T2 = 10,000°. 

The exponential dependence of l ( T), which re
sults in a sharp step in CW, is valid actually only 
in the temperature range where the first ionization 
alone is significant, i.e., up to "" 30,000 to 40,000°. 
At higher temperatures, l goes through a mini
mum and then increases (relatively slowly). 
Therefore, the upper edge of a sufficiently strong 
wave with T1 > 50,000 to 100,000° is quite spread 
out, more so than T ( T) of formula (11). [Were 
l constant in the high-temperature region, the pro
file of T ( x ) would coincide exactly in this region 
with the profile of T ( T) ). An approximate profile 
of the temperature over the entire wave is shown 
in Fig. 3. 

To estimate the accuracy of the radiant heat
conduction approximation in which the temperature 
profile has been determined, and to define thereby 
the concept of a "strong" wave, we can determine 
the correction to the value of the flux 8:! = 2aT~, 
necessitated by the deviation from local equilib
rium. Obviously, this correction gives the accu
racy of the approximate solution of the equation 
for the CW, since the greatest deviation from 
local equilibrium occurs precisely on the lower 
boundary of the wave. Calculation of the above 
correction by the method of successive approxi
mation yields: 1- S2 /2o-T~ = 0.18 for TtfT2 = 1.5. 
Its value becomes 0.1 for TtfT2 = 3. Thus, the 
accuracy of the radiant heat-conduction approxi
mation increases rapidly with increasing ampli
tude of the CW, and a wave with T 1 /T 2 = 3 can 
be considered strong to within 5%. 

3. LOWEST EDGE OF COOLING WAVE AND 
TRANSITION TO THE TRANSPARENT ZONE 
OF THE COOLED AIR 

We have considered above the structure of the 
CW front, i.e., of that layer in which the air cools 
by radiation from an initial temperature T 1 to 
the transparency temperature T2• We have used 
from the very outset the general condition (1.2) to 
determine the transparency temperature, and have 
assumed that when T1 < T2 the air is absolutely 

transparent. Actually, the absorption of light by 
air cooled below temperature T2, although small, 
is nevertheless finite. 

What happens to the radiation from the front of 
the CW, and how does the temperature behave in 
the zone of the cooled air? 

The process in this region is essentially .non
stationary and depends on the actual conditions 
such as dimensions, hydrodynamic motion, or ~d
ditional mechanisms of light absorption which take 
place at low temperatures (see reference 1). We 
shall consider here the important case when the 
air pressure has not yet dropped to atmospheric 
and.the radiation-cooled air continues to cool adi
abatically. Owing to the exceedingly strong depend
ence of l on T, the air is adiabatically cooled 
quite rapidly to a temperature, at which the absorp
tion becomes so small that this region of air no 
longer exerts any influence whatever on the mode 
of the CW. 

Little is changed by the adiabatic cooling in 
that layer of air, which still can influence the gen
eral distribution of the temperature, and in which 
the temperature drops to 1,000 or 2,000° below the 
transparency temperature. A process with adia~ 
batic cooling is therefore quasi -stationary over the 
entire region of interest. 

Let us trace the successive changes in the state 
of an air particle that enters a strong CW or, what 
is the same, let us move in the positive direction 
of the x axis at a constant velocity u. Let the 
particle enter the CW with a high initial tempera
ture T 1· It will start to cool rapidly by radiation. 
The radiation density in the particle remains in 
this case at all times below equilibrium, since the 
energy absorbed per unit time is less than the ra
diated energy; the radiation flux increases in the 
particle. The speed of adiabatic cooling is first 
considerably below the speed of radiant cooling. 
This continues until the particle cools down to 
such a low temperature, that the speed of adiabatic 
cooling exceeds the speed of radiant heat exchange. 
As a consequence of the exceedingly sharp drop in 
absorption ( and radiation) with diminishing tern
perature, even slight adiabatic cooling makes the 
particle almost transparent after that instant, and 
the radiant heat exchange soon ceases. 

Now the radiation density, which is determined 
by the flux generated in the hotter layers and pas
sing through the particle, remains almost constant. 
On the other hand, the equilibrium radiation den
sity, proportional to T4, diminishes rapidly. The 
radiation density in the "transparent" region be
comes greater than equilibrium, unlike the "non
transparent" one (the energy absorbed per unit 
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time becomes greater than the radiated energy ) . 
The air then becomes somewhat heated by the 
radiation, and the flux diminishes. Consequently, 
there exists on the x axis such a point x = x2 

(with corresponding optical thickness and temper
ature r 2 and T2 respectively), which separates 
the regions of the "nontransparent" air, which is 
intensely cooled by radiation, from the almost
transparent air, which is slightly heated by the 
radiation. The ra~liation density at this point is 
exactly equal to the corresponding equilibrium 
value U2 = Deq2, and the flux S2 in it is a maxi
mum. 

Obviously, the point at which the cooling of the 
air by radiation ceases should indeed be considered 
the lower boundary of the CW, and the temperature 
in this point should be considered the transparency 
temperature for a given value of adiabatic cooling 
A. The flux S0 that goes to infinity is somewhat 
less than the flux S2 from the surface of the CW 
front, owing to absorption in the "transparent" 
zone. This absorption turns out to be small: the 
optical thickness of the "transparent" zone, as es
timated in the Appendix, is approximately r 2 ~ 0.16, 
so that S0 is only little less than S2, 

The temperature and flux profiles T ( x) and 
S ( x), corresponding to the above qualitative de
scription of the process, are shown schematically 
in Figs. 4 and 5. At low temperatures the curve 

T 

FIG. 4. 

.51 

.rz 

FIG. 5. 

T ( x) follows very closely the lower straight line 
corresponding to the constant adiabatic cooling A 
and to the flux S0 going to infinity. The curve ap
proaches this line from below, since the air in this 
region is heated by radiation. On the high tempera-

ture side, the T ( x) curve deviates greatly from 
the upper straight line corresponding to adiabatic 
cooling A and zero flux. On the lower edge of 
the CW, where the flux is a maximum, the down
ward deviation of the temperature from the lower 
straight line is also a maximum, as can be seen 
from the energy equation (1.6). 

As shown in the Appendix, the transparency 
temperature depends only logarithmically on the 
value of the adiabatic cooling and on the amplitude 
of the CW. 

We are grateful to Academician N. N. Semenov 
for stimulating discussions. 

APPENDIX 

We consider the stationary mode of a strong 
CW with adiabatic cooling A. The integration con
stant of the energy integral (1.17), like that in the 
case of a weak CW, equals the flux that goes to 
infinity. 

(15) 

On the low-temperature side, when the flux S 
tends to S0, the temperature curve approximates 
the lower straight line 

(16) 

and on the high-temperature side, as S-- 0, the 
temperature is asymptotic to the upper line* 

(17) 

In the "transparent" region lxl > lx2l, where 
the adiabatic cooling can be neglected, the solution 
of the equations coincides with the solution obtained 
in Sec. 2. One need merely write, in lieu of the 
particular integral (11) passing through the point 
T = 0, T = T2, the general integral passing through 
the still arbitrary point ( r 2, T2 ). By extrapolating 
this solution to the transparency temperature T2, 

we obtain the previous connection between the flux 
and the temperature T 2, namely S2 = 2aT~ . 

In the "transparent" region lxl < lx21, the radi
ating ability is very small at low temperatures, the 
flux becomes unilateral: all the quanta move only 
"forward" and leave the region of sufficiently high 

*In a mode without adiabatic cooling, the condition S -+ 0 
on the high-temperature side is equivalent to the condition 
T-+ T, = const. On the other hand, there the temperature 
gradient is not only different from zero, but tends to a constant 
value at high temperatures. To satisfy the condition S-+ 0 at 
T -+ oo, and for the mode to exist, it is essential that l -+ 0 
sufficiently rapidly at T -+ oo. In the problem of the weak CW, 
this condition was automatically satisfied through the use of 
the approximation formula (I. 23). 
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temperature. The integral expressions (1.13) and 
(1.14) now become 

(18) 

Extrapolation of this solution, which is valid for 
Ueq « U, to the point x2 where U2 = Ueq2 also 
yields a flux S2 = 2aT~. 

By definition, the transparency temperature 
corresponds to the place in the wave, where the 
speed of radiant heat exchange dS/ dx changes 
sign, i.e., vanishes. It is clear, however, that 
near this temperature the rate of radiant cooling 
of the particle drops to a value on the order of 
the rate of adiabatic cooling. In fact, as already 
mentioned above, owing to the sharp temperature 
dependence of the coefficient of absorption, to 
which the rate of radiant cooling is proportional, 
even a small adiabatic temperature drop reduces 
sharply the rate of radiant heat exchange. The 
transparency temperature T2 can therefore be 
determined from the condition that the rate of 
radiant cooling, obtained from the extrapolated 
solution in the "nontransparent" region, must be 
equal to the rate of adiabatic cooling A. 

We calculate the rate of radiant cooling at a 
point with temperature T2 with the aid of formulas 
(1), (3), (8), (9) and (1.10): 

(dS) (dT) 3S2 
dX 2 = - uplcp dx z = uplcp 16<1T~l (T2) 

3 uplcPT2 3 <1Ti 
= 8/(T;') = 4 I (T2) (T1 I T2 -1)' (19) 

We thus arrive at a transcendental equation for the 
transparency temperature in terms of the velocity 
of the CW or in terms of the upper temperature 
T1 of the CW: 

Thanks to the exponential dependence of l on 
T, the transparency temperature depends only log
arithmically on the amplitude of the CW, an am
plitude characterized by the velocity or upper tem
perature of the wave, and on the adiabatic cooling. 

It is clear that the temperature defined by Eq. 
(20) is equal; within logarithmic accuracy, to the 
"true" transparency temperature, which is defined 
by the condition that the radiant heat exchange van
ish. This has made the above approximation pos
sible. Geometrically, condition (20) signifies that 
we extrapolate the solution from the "nontranspar
ent" side until the slope of the temperature curve 
dT/ dx coincides with the slope of the line (16), 
which the temperature curve approaches from be
low in the "transparent" region (see Fig. 4). 

We must still determine the position of the 
lower edge of the CW, i.e., the coordinates x2 
and r 2• For this purpose we determine approxi
mately the optical thickness T corresponding to 
some point x in the "transparent" region. Noting 
that in the low-temperature limit the absorption 
of the flux is negligible ( S:::; S0) and the tempera
ture curve T ( x) almost coincides with the lower 
straight line (17), we obtain 

(21) 

Here we bear in mind the "exact" Kramers for
mula for the free path instead of approximation 
(1.23), by which l = co when T = 0. Inserting the 
free path given by (1.3) into (21) and recalling that 
at low temperatures an exponential law is much 
stronger than a power law, we obtain by approxi
mate integ·ration 

(22) 

By the very nature of its derivation, this formula 
is valid when T « 1. If it is referred to the lower 
edge of the CW, i.e., to the point where T = T2, 
we obtain with the aid of (20) 

(23) 

Since I= 14 ev and T2 :::; 10,000° in air, r 2 :::; 
0.164 turns out to be rather small, and (23) can be 
considered as the optical thickness of the lower 
edge of the CW. 

The geometric coordinate of the lower edge of 
the CW, which equals, according to (22) and (23), 

(24) 

represents in this case the distance, at which the 
temperature is reduced by adiabatic cooling from 
T2 to 0. 

As expected, the free path corresponding to the 
transparency temperature is exactly of the same 
order as determined from the value of the adiabatic 
cooling and its time of action. 

1 Zel' dovich, Kompaneets, and Raizer, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 34, 1278 (1958); Soviet 
Phys. JETP 7, 000 (1958). 

2 A. Unsold, Physik der Sternatmosphilren 
Berlin, 1955. 
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