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A method is developed which enables one to obtain the electron-energy spectrum and disper­
sion of the lattice vibrations without assuming that the interaction between electrons and pho­
nons is small. 

1. INTRODUCTION 

THE attraction between electrons due to the ex­
change of phonons leads in superconductors to the 
formation of a bound state of two electrons with 
opposite momenta. In the ground state of a super­
conductor a condensed component consisting of 
these bound electrons is formed and a gap results 
in the energy spectrum. 1 

In papers on the theory of superconductivity1 

the interaction between electrons and lattice vibra­
tions has been assumed to be small, although we 
know that this condition is not fulfilled for all super­
conductors. I~ is therefore of interest to construct 
a theory which is not limited in this way. 

In the present paper we develop a method which 
enables one to consider the interaction between 
electrons and lattice vibrations in a normal metal 
without assuming that the interaction is small. The 
method is based on the use of quantum field-theo­
retical equations. 

The application of field theory to superconduc­
tors involves certain difficulties. The state which 
contains the "condensate" of bound electrons can­
not be obtained from the ground state of noninter­
acting particles by applying the interaction adiabat­
ically. The necessary condition for the use of or­
dinary field-theoretical methods it,> thus violated. 
The method developed below for a normal metal, 
where this difficulty does not occur, can therefore 
be extended to a superconductor only through a 
separate investigation. 

The interaction between electrons and lattice 
vibrations in a normal metal is certainly of inter­
est in itself. Frohlich2 used perturbation theory 
to investigate this interaction. He considered an 
isotropic model of a metal described by the Hamil­
tonian 

996 

H = H0 + H1 , H0 = L E~atap + L w~btbq, 
P q<qrn 

H 1 == L rtqat+qap (bq + b:!=q), (1) 
p,q<qm 

where ap, ap and bq, bq are the annihilation and 
creation operators of electrons and phonons and 
qm is the maximum phonon momentum. We know 
that a~, which determines the interaction between 
electrons and phonons, is given for small q (in 
atomic units) by 

rt~ = ('-o'IT2/po) w~, w~ = coq, (2) 

where ~9 is the unrenormalized velocity of sound, 
c0 "' M-¥ 2, M is the mass of an ion and 71.0 is a 
dimensionless parameter, introduced by Frohlich,2 

which does not contain the ion mass; 71.0 ~ 1. 
It will be shown below that the energy spectrum 

of the Hamiltonian (1) cannot be obtained by pertur­
bation theory, despite the smallness of the param­
eter M-1/ 2 in aci. The criterion for the applica­
bility of perturbation theory is the smallness of 71.0, 

which does not contain the ion mass. Field theo­
retical methods3 enable us to obtain the energy 
spectrum, without assuming that 71.0 is small, as 
a power series in M-112• 

2. METHOD OF SOLUTION 

We introduce the electron and phonon propaga­
tion functions G and D: 

G = i (T'Y (1) '¥+ (2)), D = i (Tcp (1) cp (2)), (3) 

where the averaging is performed over the ground 
state of the system 

'P = eifft L (b + b± ) eiqrrt e-iHt, 
q<qm q q q 

'Y = eiHt L apei~re-iHt. 
p 

Dyson's equations relate D and G to the vertex 
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part r, which is defined by the following set of 
diagrams: 

I 
I r(p,1x = 

p+qj2 p-q/2 

(4) 

Here q = ( q, w) and p = ( p, E ) • The interaction 
energy in (1) can be written in the form 

where "IJ!p and <Pq are spatial Fourier components 
of the operators in the Green's functions. There­
fore the first diagram in (4) corresponds to r = r 0 

= 1. It will be shown below that the following terms 
in (4) are of the order of M-1/2. Therefore r can 
be replaced by 1 in Dyson's equations, after which 
a closed system of equations is obtained for D and 
G. In the momentum representation Dyson's equa­
tions are 

where 

G (p) = Go (p) + Go (p) E (p) G (p), 

E(p) = +~ G(p-q)D(q)r(p- f. q)d4q, 

D (q) =Do (q) +Do (q) II (q) D (q), 

II (q) = + ~ G (P + t) G (P- t) r (p, q) d4p, 

(5) 

!: and IT are the irreducible parts of the electron 
and phonon self energies, and D0 and G0 are the 
electron and phonon Green's functions in the ab­
sence of interaction: 2 

where 

1 
Go (p) = 0 ·~ ( ) , ep-e-1 p 

D ( ) - cx2 { 1 + 1 } o q - q o ·a o + ·a , CJ)q-CJ>-1 CJ)q CJ)-1 

a(p)~{+O P>Po, 0_,.+0. 
-0 P<Po 

Assuming r = 1 in (5), we obtain G and D. 

(6) 

As was shown in reference 3, the energy spectrum 
is determined by the poles of the analytic continu­
ation of G ( p, E) and D ( q, w) in the complex 
plane. 

3. THE VERTEX PART 

We shall show that the vertex part differs from 
r 0 = 1 by a quantity of the order of M-1/ 2• Let us 

consider a first-order perturbation correction to 
r. 

I 
I 
I ljA 

We shall assume that 

since for our further calculations this is the im­
portant range of values of p and w. From our 
definition of G and D each internal line of the 
diagrams corresponds to a Green's function divided 
by i. We obtain 

'rl (p, q) = i ~Do (p- P1) Go (P1 +-})Go (P1- f) dp1· 

(7) 

In accordance with (6), the function D0 ( p- Pi> 
E- E1 ) possesses the following properties: 

When IP -P1f"' Po and E- E1 « w0, D0 can be 
replaced by 

Do= 2-rr.2Ao/Po· 

When E - E1 » w0, D0 diminishes as ( E - E1 ) - 2• 

For IPt -PI > ~. D0 = 0. Using these properties 
of D0, we obtain for r 1: 

(8) 

Integration with respect to Et gives the factor 
w0 "' M-1/2 and leads to 

rl ~ f..owo/P~~f..o/V M, 

if integration over p1 does not introduce factors 
,.... 1/w0• Such factors result only for small q ~ 
w0 /p0 and w < w0, when the two poles of the in­
tegrand approach each other. Then the integrand 
has a maximum near p1 = g, where g is given 
by E~ = E1 <::.! E and thus g "' p0• Integration over 
regions far from this maximum does not introduce 
factors ,.... 1/w0• We can therefore limit ourselves 
to consideration of the integral over p1 in the re­
gion (p1 -g)/g « 1. Using (6) and the notation 
E~1 - E = E, we obtain from (8) 

•+w,/2 1 oo 

r~~it..0p0 ~ ds1 ~ dx ~ dE j[E + ug:x 
E-Col1 /2 -1 -co 
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For simplicity it is assumed here that qm > p + g, 
and the condition IP- Pd < qm imposes no limita­
tion on integration near p1 =g. 

Integration with respect to E gives 

where 

{1 y??O 
a(y)= 0 y<O' 

Integrating with respect to x, we obtain 

(9) 

The last integral differs from zero in the region 
IE- ~-to I ~ w0 and is of the order of Wto where w1 

is the smaller of the numbers w0 and w. It fol­
lows from (9) that the largest value rt "' :>..0 is 
reached for w "' w0 and q "' w0/p0• These values 
of q and w play no part in our subsequent calcu­
lations. Indeed, for the calculation of ~ ( p) ac­
cording to (5) the essential values are q "' Po and 
W "' Wo, for which it follOWS from (8) that rt "' 
M-1/ 2• For obtaining II ( q) the essential values 
are w "' wq "' qp0 /..fM « p0q ( wq is the frequency 
of a phonon of momentum q). From (9) we obtain 

We thus have r = 1 + 0 ( M-1/2 ). It can be shown 
that this estimate is not changed when diagrams 
of a higher order are taken into account. 

4. THE PHONON GREEN'S FUNCTION 

As will be seen from our subsequent calcula­
tions, G ( p, E) differs essentially from G0 ( p, E) 
only in a narrow range of values of p and E: 
IP -Pol "'woiPo; E- E~"' w0• In the calculation of 
II ( q, w) according to (5) the integration is per­
formed over a wide range of the variables, which 
permits us to replace G by G0 accurately to 
terms "'M-1/ 2• For II( q, w) we obtain from (5) 

Integration of (10) with respect to E gives 

n( w) = _1_ \ n (p- q/2)- n (p + q/2) d8p, (11) 
q, (2rr)3 .\ o 0 ·a II I "p+q/2 - "p-q/2 - (U - l (U (U 

where 

12 (p) = { 1 P >Po 
0 P <Po· 

We see from (10) and (11) that IT ( q, w) is an 
even function of w. For subsequent calculations 
the important values of IT ( q, w ) are obtained for 

w ~ Wq ~ Poq /VM <.. Poq · 

With these values of w we have from (11) 

IT (q,w) = (2:)2 [g (2!~) + r.i JP:;], (12) 

where 

1[ 1-x2 11+xj] g (x) = 2 1 + 2X ln 1 _ x . (13) 

g ( x ) can be represented in the interval 0 < x < 1 
with sufficient accuracy by 

g(x)=l-x2/2. 

From (2), (5) and (12) we obtain 

1 
D ( q ,w) = -=--;-1 -----:­

D0 (q, cu)- IT (q,cu) 

= [(cu0)2- cu2- (cu0)2J. (g (-q_) + irr ~)] 
q q 0 , 2p0 2p0q 

(13') 

The real part of the pole of D ( q, w) gives the 
renormalized phonon frequency 

Eq. (13') was used in the derivation of this last 
equation. The imaginary part of the pole gives the 
phonon attenuation 

(\ (q) = lj4r.Ao (w~)2/poq. (15) 

The relative attenuation is given by 

81 (q)jwq = "A0 (w~)2r./4p0qwq ~ "A0/VM ~I. 

From (14) and (15) 

cuo ( 1 
D(q, w) =IX~ cu:· cuq-cu-ill1 (q)cu/ leu I 

+ cuq + cu- i~1 (q) cuf I cuI ) • (16) 

Thus the phonon Green's function D, which was 
obtained by taking the interaction with electrons 
into account, differs from Do through replacement 
of the frequencies w& by wq -i0 1 (q) and the oc­
currence of the renormalizing factor w&! wq. 

5. THE ELECTRON GREEN'S FUNCTION 

From (5) we have 
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G = I/fsg-E- ~(p,s)], (17) 

1:(p,s)= i(~n:)• ~ D(p-pl, s-si)dpidsi/[sg,-si-~(PI• si)]. (18) 
lp-p,l<qm 

G will now be obtained by solving the integral 
equation (18). 

It is easily seen that ~ ( p, E)"' w0, so that G 
differs essentially from G0 only for IE~- El ..... w0• 

The relative change of the excitation energy is 
large only for E~ - f..!o "' w0• Thus the electron ex­
citation spectrum varies appreciably only close to 
the Fermi surface in the range p -p0 "'w0 /p0• 

We introduce the notation 

(s~- [L0)/w0 = ~. (s- tL)/w0 = "1), 

~ (~, "I))=~ (0, 0) + w0f (~, "1)), (19) 

where 

fl.= [Lo + ~ (0,0), 

w = w I = wo (I - ~) (19') 0 q q~2P, 2Po 2 • 

As was shown in reference 3, the imaginary part 
of ~ ( ; , 1)) must vanish for any value of ; when 
E equals the chemical potential. 

As will be shown below ~ ( 0, 0 ) is real. There­
fore 

Im ~ (0, "I)) = w0 Im f (0, "I)); 

since according to (19) 

f (0, "I)) l~~o = 0 

and thus Im ~ vanishes for E = f.! (f.! is the 
chemical potential ) . 

In the notation of (19) and (19') G becomes 

G (~, "1).) = "'io ~ -1) ~ f (1;, 'YJ) • (20) 

From the foregoing discussion we are interested 
in; and 17"' 1. 

In (19) we pass from integration over the angles 
of the vector p1 to integration over q = IP - Ptl : 
q dq = pp1 dx, where x is the cosine of the angle 
between p and p1. We have 

or 

co 

~(p,s)=i(Z!)"p~dw ~ qdqp1 dp1 

-co lp-p,l<q<p+p,; q<qm 

X D (q,w)jfsg;- s- w- ~ (PI• s + w)], (21) 

co qm 

~ (p, s) = (Zn:~" ip ~ dw ~ q dqD (q, w) 
-oo 0 

P+1 

X ~ P1 dpi/[sg,- s-w- ~ (PI• s + w)]. (21') 
jp-ql 

As mentioned previously, values of p close to 
Po are of interest, so that ( p- Po )/p0 "' 1/fM.. 
Therefore in the right-hand side of (21) p can be 
replaced by Po accurately to within M-1/ 2• We 
divide the integration over p1 into two regions 
defined by 

I) I~II=[sg,-tLoJ/wo<Y and 2) l~I[>y, 

where y lies between the following limits: 

I~ y«; I/v, v = w0/p0 ~ I/V M. (22) 

In the integral over region 1 ~ ( p, E) in the inte­
grand can be replaced by ~ ( p0, E + w) accurately 
to within ...., M-1/2. 

We note that for qm > 2p0 region 1 exists only 
for q < 2p0• Therefore for the integration over p1 

in (21), in the term corresponding to region 1 the 
integration over q is carried as far as the smal­
ler of the quantities ~ and 2p0• 

Since D ( q, w ) for w » w0 vanishes as w - 2, 

in the integral of (21) the essential result is found 
for w "' w0, and for integration in region 2 we can 
neglect E - f..!o and ~ ( p1, E + w) in the denominator 
of the integrand compared with E~1 - f..!o, with accu­
racy "' 1/y. Therefore integration over the region 
l;d > y introduces into ~ a term which is inde­
pendent of p and E. This term is ~ ( 0, 0) =f.! -
f..!o, since integration overthe region 1; 11 < y yields 
an expression which vanishes for 1) = 0. 

Therefore the change of the chemical potential 
is given by 

[1.-[1-0 = ~(0, 0) 

oo Qm p,+q 
f I \ I p, dp, 

= ip (Zn:)• ~ dw ~ q dqD(q,w) ~ E~, _flo 
-co 0 lp,-ql 

(23) 

The integral over p1 in (23) is taken in the 
sense of the principal value, which corresponds to 
dropping of the region I ; 11 < y, which is small com­
pared with the essential region of integration. 

Subtracting ~ ( 0, 0 ) from the left and right 
members of (21) and dividing by w0, we obtain an 
integral equation for f ( 0, 1)) = f ( 1)): 

(24) 

where q1 is the smaller of the numbers ~ and 
2p0• Here terms v;, v; 1 « 1 have been dropped. 
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Since the essential values in (24) are 11' « y the 
limits with respect to ~ 1 can be replaced by ± oo. 

Integration over ~ 1 gives 

where f1 denotes the imaginary part of f. As 
was shown in reference 2', the imaginary part of 
the Green's function, and thus f1 ( 11), reverses 
its sign for 11 = 0; moreover, f1 ( 11) > 0 for 
11 > 0. Therefore 

Sgn fd'YJ) = Sgn 'YJ· 

Inserting these results in (24), we obtain 

q, 00 

f ('YJ) = S:"Po ~ q dq ~ Sgn ('YJ + 'YJ1) D (q, (J)0'fj') d'fj' 
0 0 

q, 'I) 

= ~~ qdq \ D(q, w0'fj')d'fj'. 
7t Po ~ ·-o -'1) 

We use the notation 

For f0 and f1 we obtain 

2 ~ ~ 

f _ IXq 2 ~ ( 0)2 d ~ 28t (q) I "'' I Wo d1)' 1---- 1t (i) q q -. 
8rt2p cuo q (w2 _ W21)'2 )2 + 482w21)'2 7t' 

0 q 0 -'1) q 0 1 0 

(25b) 

It is easily seen that for 11 » 1/.fM.. the inte­
grand with respect to 11' in (25b) can be replaced 
by o ( wq- w0'f'/'). Using the notation x = q/2p0 
and integrating over 11', we obtain 

(26) 

Here x1 = q1 /2p0, y = g/2p0, where g is given 
by the condition wg = w011 for ' 1111 < 1 and y = x1 
for 1111 > 1. 

We introduce the variable t = wq/w0• Accord­
ing to (14) and (19'), t is related to x by 

t 2 _ 1 2{1 ' + Ao 2) 
- 1 - Ao/2 X \ - "o 2 X • 

For f0 we obtain 

For 11 « 1 we have 

(28) 

The imaginary part, f1 ( 11), is 

t, v-2--2 
f1('fJ)=r.~[I-}ra"a+t.]dt=1t{t 1 -aln 1'+: + 11}, 

0 

(29) 

where t1 = 11 for 1111 < 1 and t1 = 1 for 1111 > 1; 
for M-172 « 11 « 1 we obtain 

f ( ) =,3 rtl.0 (2- 1.0) 3 

1 "' = 6a2 = 6 (1-1.0) 2 'YJ • (30) 

For 11 « 1/.fM.. in the denominator of the integrand 
of (25b) 11' can be neglected. This gives 

x, 

f /..2 cu0 \ dx 1 / ( 31) 
1 = o 4p~~-[1- Aog (x)]2"' I"' . 

The attenuation of the electron excitations given 
by (30) results from the emission of phonons. When 
the energy of a quasi-particle is very close to the 
Fermi surface ( 11 « M-1/2 ), a different attenuation 
mechanism is more important; this is attenuation 
due to the interaction between electrons, which re­
sults from phonon exchange. As mentioned above, 
interelectronic interaction leads to attenuation 
which is proportional to the square of the short 
distance from the Fermi surface, as follows from 
(31). 

The electron energy spectrum is determined by 
the poles of G, that is, by the condition 

(32) 

For small 11 we have 

Returni~ to the usual notation and subtracting 
the energy of a hole, we obtain for the excitation 
energy 

where p2 > p0, p1 <Po and v8 is the unrenormal­
ized velocity on the Fermi surface. Renormaliza­
tion of the velocity on the Fermi surface is given 
by 

v~ . _ 1-1.0/2 
V0 = 1 + J. , f.. - 2ln 1 _ ~ • (34) 

For Ao « 1 we obtain from (34) 
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This equation agrees with the result that Frohlich 
obtained by using perturbation theory. 

Equation (34) shows that v0 > 0 for all values 
of ::\, and the rearrangement of the Fermi distri­
bution which Frohlich predicted does not occur. 

It follows from (30) that for ::\0 "' 1 the excita­
tion attenuation equals the excitation energy in 
order of magnitude for TJ "' 1, i.e., for the excita­
tion energy 

With further increase of the excitation energy, the 
attenuation ceases to increase and becomes smal­
ler than the excitation energy. Thus for ::\0 "' 1 
electron excitations in the region Ep1p2 "' w0 can­
not be described by means of quasi-particles. 
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Radiation-cooling wave of air accompanied by a large temperature drop, is considered. It is 
shown that, the radiation is always from the lower edge of the wave, regardless of the value 
of the upper temperature, and that the radiation transfer inside a strong wave has the charac­
ter of radiant heat conduction. The strong-wave mode with adiabatic cooling is considered. 

IN the first part of this work (reference 1)* we enough to either aTf or to a~. In this article we 
have described qualitatively the cooling of a large present the theory of a strong CW, in which the 
volume of hot air by radiation. We have found in upper temperature can be unlimited. The funda-
this case that a unique temperature profile is de- mental problem consists obviously of determining 
veloped in the air in the form of a step or a cooling the radiation flux from the front of the CW to in­
wave (CW) propagating towards the hotter air. The finity. Another problem is to find the temperature 
air in the wave cools down from a high temperature distribution in the front of the CW. 
T1 to a lower temperature T2• At the lower tem­
perature T2 the air becomes transparent, i.e., 
stops absorbing and emitting radiation. 

In reference 1 we have considered the limiting 
case of a weak CW, in which the upper and lower 
temperatures T1 and T2 are not greatly differ­
ent, and consequently the flux from the CW is close 

*Henceforth, when referring to the formulas of the first part 
of this article, we shall precede the number of the formula by I 
[e. g. (1.4), (1. 10)]. 

1. DETERMINATION OF THE RADIATION FLUX 
FROM THE FRONT OF THE COOLING WAVE 

It was indicated in reference 1 that to find the 
stationary mode of the CW it is necessary to em­
ploy one of two procedures. In the first we intro­
duce a constant adiabatic-cooling term into the 
energy equation. In the second we determine at 
the very outset the transparency temperature T 2, 

using formula (1.4). We then assume that when 




