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(May, 1958) 

PREVIOUSLY reported experiments1 disclosed 
electron emission upon cleavage of certain crystals 
in a vacuum of 10-4 to 105 mm Hg. 

To study and to explain further the nature of 
the emission, it was necessary to use higher vacu
um, which in turn called for development of a new 
procedure. To attain high vacuum in the simplest 
possible manner, it was decided to make the equip
ment completely of glass, like the instruments used 
for the study of the kinetics of chemical reactions 

(see diagram). The upper portion of the instrument 
consisted of a trap 1 for the lubricant vapor with a 
ground neck. The lower portion of the instrument 
consists of a sealed tube 2 which was inserted into 
ground section 3. Placed inside the instrument 
was a setup for cleaving solid specimens to incan
descence, consisting of stainless steel tube 4 
with windows, and of a brass cylinder with spring 5. 
Attached to this cylinder were guides for a knife 6 

and a holder for x-ray film 7. Located in the upper 
portion of the tube was a trigger 8 for falling 
weight 9. 

The instrument was sealed to a vacuum mercury 
pump and evacuated to a pressure of approximately 
10-7 mm Hg (the vacuum was measured with an 
ionization manometer). After evacuating the in
strument, lever 10 of the trigger was rotated with 
an electromagnet, and the weight fell and fractured 
a plate approximately 4 mm. The photographic 
film was exposed to the electrons emitted from 
the gap formed upon cleavage of the plate. 

It was observed in the preliminary experiments 
that upon cleavage of glass and diffused quartz 
there is no noticeable change in the vacuum, and 
no electron emission was observed ( like in the 
previous experiments ) . 

Cleavage of crystalline quartz (like in the pre
vious experiments) caused electron emission, and 
the pressure rose to 10-' to 10-5 mm Hg (meas
ured with an ionization manometer ) . The area of 
the fresh surface obtained upon cleavage of crys
talline quartz was approximately 1 em 2• The 
capacity of the vacuum system was about 1300 
cubic em. Liberation of gas was observed also 
upon splitting of mica and stripping of high-polymer 
films from glass. 

The author is grateful to Professor B. V. 
Deriagin for valuable advice. 

1 N. A. Krotova and V. V. Karasev, Dokl. Akad. 
Nauk SSSR 92, 607 (1953). 
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LoGUNOV and Semenov1 have pointed out the ex
istence of statistical capture of electrons into beta
tron orbits and have estimated the efficiency of 
this mechanism. This calls for the following two 
essential remarks. 

1. This mechanism can work only at not too 
large densities of the injected electrons. In par-
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ticular, it will not work at the conditions of the 
example treated in Ref. 1. This can be seen from 
the following estimates. 

The electrons are injected in a beam with an 
area S = 1 cm2 and a density N0 = 4.22 x 108 

electrons/cm3• We shall assume a beam of round 
cross section.' The electrostatic force repelling 
an electron situated on the edge of the beam is 
given by 

(1) 

On the other hand, the same electron will be 
attracted to the center of the beam by a force due 
to magnetic focusing: 

where m is the electron mass, v the velocity of 
the injected electrons, R the radius of the equi
librium orbit, and n the magnetic field decrement 
index. From (1) and (2) we have 

I F.ep/ Fatt I= 2r.roR2No / ~2 (I - n), 

r 0 = e2 j mc2 , ~ = v j c. 

For the conditions of the example of Ref. 1 this 
yields 

(3) 

(4) 

Thus the beam will begin to spread right after in
jection, and the electron dynamics will differ con
siderably from that assumed in Ref .• l. Electron
electron scattering of the kind on which the pro
posed capture mechanism was based will thus ·not 
occur for the majority of the electrons. Actually 
a large fraction of the electrons will be lost to the 
walls already within the first revolution and will 
thus not be able to experience even a single scat
tering event of the required kind. If one takes into 
account this and the loss of electrons in the sub
sequent revolutions, one finds that the estimate 
of the number of captured electrons obtained in 
Ref. 1 has to be decreased by a factor approxi
mately equal to the ratio of the number of injected 
to captured electrons, i.e., by approximately two 
orders of magnitude. Mathematically this is ex
pressed by a suitable decrease of N in the nu
merator of Eq. (4) in Ref. 1. Secondly, the capture 
efficiency will be decreased by another order of 
magnitude, owing to the decrease of the factor N0 
in the same formula. Thirdly, the following facts 
have to be considered. Besides radial oscillations 
the electrons oscillate also in the z direction and 
longitudinally. Only the transfer of energy from 
the radial oscillations into other oscillations was 
considered in Ref. 1. However, if these other os
cillations are already excited, then energy will 

also be transferred into the radial oscillations. 
This actually will be the case in the example con
sidered, and thus the efficiency of the proposed 
mechanism will be further decreased. So one finds 
that for large densities of the injected electrons, 
where the capture i.s most effective, this capture 
mechanism does not work. It therefore can not 
explain that part of the electron capture for which 
it was adduced in the first place. It plays only a 
subordinate role and only at sufficiently low den
sities, in the range between single electron capture 
and collective capture. We shall make a few re
marks on this subject in the second comment. 

2. The decisive capture mechanism is due to 
the Coulomb interaction and consists, in our ex
ample, of the following. 

Right after the instant of injection, electrons 
begin to be lost to the walls close to the injector. 
The region of contact of the electron beam with 
the walls of the donut will increase at a rapid rate 
and after a time of one revolution electrons will 
hit the donut walls all around. The donut at that 
time will be filled with an electron cloud of de
creasing density. At the time when the beam will 
stop expanding the electron density will be roughly 

Nn = Nef In (No/ N.), N, = ~ 2 / 4r.r0R2 = 0.3 · 108 • (5) 

From now on the electrons will start contract
ing toward the center of the beam, which itself will 
oscillate about the equilibrium orbit with a very 
small amplitude. This oscillation is due to the 
loss of electrons. Thus the survival of some elec
trons is due to the loss of others to the walls. The 
electrons which have survived the first revolution 
[their number is given by Eq. (5)] will now inter
act with the electrons which are being injected at 
this time and so a large number of electrons will 
be lost during the second revolution. Thus the 
mean life of electrons in the beam is approximately 
two revolutions or even a little less; for lower den
sities it would be a little more. During the second 
revolution the picture remains essentially the 
same except for the slight modification introduced 
by the presence of the electrons which have sur
vived from the first revolution, etc. The number 
of electrons captured with the right momentum 
and being accelerated is given by 

Ny = Nn 2r.RSetf = 0.45· 1010 , (6) 

where Seff denotes the area of the effective donut 
cross section. The obtained numerical value cor
responds to the conditions discussed in Ref. 1. 
Equation (6) is valid for injection currents equal to 
or larger than the saturation current ·and has been 
derived for N0/Ne » Seff > 1. For smaller cur-



920 LETTERS TO THE EDITOR 

rents and densities the formula has to be modified. 
This way one can give a mathematical descrip

tion of the treated physical picture of the capture 
process. The theory then gives good agreement 
with experiment, both qualitatively and quantita
tively. 

1 V. I. Logunov and S. S. Semenov, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 33, 1513 (1957), Soviet 
Phys. JETP 6, 1168 (1958). 
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Submitted to JETP editor January 24, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1333-1335 
(May, 1958) 

As is well known, the amplitude for scattering 
of a particle of given angular momentum l by a 
central field of force cannot be analytically con
tinued into the upper half plane of the variable k. 
An interesting proof of this is connected with the 
inverse problem of scattering theory (Gelfand 
and Levitan, 1 Marchenko2 ). 

For brevity we assume that there are no bound 
states and that scattering takes place in the s 
state; the generalization of the problem is obvious. 

Following Marchenko, 2 the solution of the equa
tion 

dzcjl (x, k) I dx2 + (k2 - V (x)) cjl (x, k) = 0 (1) 

can be given as an expansion in integrals over the 
system of functions 

(jl (y, k) = (2/7r:)'l• sin [ky + o (k)] (2) 

[ o ( k) is the scattering phase, known from experi
ment ] in the following way 

co 

cjl (x, k) = c:p (x, k) + ~ A (x, y) c:p (y, k) dy. (3) 
X 

In this equation A ( x, y) is determined from 
the integral equation, the kernel and inhomogeneity 
of which are expressed through the Fourier com
ponent of the scattering amplitude M ( k) = 

exp { 27Ti o( k) } - 1: 
+oo 

1 I m (z) = z,; ~ M (k) eikzdk, for z > 0. (4) 

If m ( z) = 0 for z > 0, then it follows from 
the equation of Marchenko that A ( x, y) = 0 and, 
according to Eq. (1), the wave function lf! ( x, k) 
coincides with the solution of the free equation 
everywhere except at the origin (contact interac
tion). On the other hand, m ( z ) going to zero for 
z > 0 means, according to Eq. (3), that the scatter
ing amplitude does not have poles for Im k > 0 and 
grows with k -- oo ( Im k > 0 ) no faster than as a 
power of k, since in this case the contour of inte
gration can be closed around a half circle of large 
radius lying in the upper half plane. 

From this it follows that, if the scattering is de
scribed by a potential, then either the amplitude 
has a pole (a so-called spurious pole, since we 
assumed that the system did not have a level), or 
it grows faster than a polynomial for k -- oo ( Im k 
> 0 ). 

If the potential is bounded in space [ V ( x ) = 0 
for x > a], then m ( z) goes to zero for z > 2a. 
This follows from the relation 

~ c:p (y, k) <p (x, k) dk = o (y- x)- m (x + y). (5) 

In fact, for ( x and y) > a, q; ( x, k) and q; ( y, k) 
coincide with the solution of the Schrodinger equa
tion and, therefore, should be orthogonal. But then 
it follows from Eq. (4) that the function 

Ma (k) = M (k) e2ika (6) 

is analytic in the upper half plane. This result was 
obtained by Van Kampen3 from other considerations. 

If the scattering amplitude is known for au en
ergies, then, as was shown most rigorously in the 
work of Khuri,4 the function 

(7) 

(where M ( E, T) is the scattering amplitude, 
viewed as a function of energy E and given mo
mentum T, and V T is the Fourier component of 
the potential ) can be analytically continued in the 
complex E plane ( or upper half plane of k) and 
a dispersion relation can be given for it.* 

From the dispersion relation for the function 
(7) obtained by Khuri, it can be seen that if the 
scattering amplitude is known, then the potential 
is determined by the amplitude without solution of 
the integral equation. 

We emphasize that this assertion is valid if the 
scattering amplitude is known for all energies. 
Since even the Schrodinger equation is valid only in 
a limited region of energy, then the scattering am-


