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THE existing techniques of treatment of the elec­
tromagnetic field do not allow to handle the inter­
action of photons with other fields in terms of quan­
tum field theory in a number of cases. These 
problems include the whole complex of gravitation­
electromagnetic interactions: graviton-photon scat­
tering, graviton bremsstrahlung by photons, etc. 
In order to treat such problems one has to formu­
late the wave equation of light quanta in matrix 
form. 

The fundamental difficulty in formulating a 
matrix theory of the photon field lies in the fact 
that the rest mass of the photon vanishes and fur­
ther that the wave function contains both electro­
magnetic potentials and fields. This makes the 
application of the Kemmer formalism exceedingly 
difficult. 1 •2 However, by applying the Dirac alge­
bra3 one can remove this difficulty and it is pos­
sible to formulate a photon theory analogously to 
the Lee-Yang theory4 of rest-mass-zero fermions. 

In Ref. 5 it was shown explicitly how to achieve 
a representation of the 16-row Kemmer algebra 
by 8- or 4-row representations of the Dirac alge­
bra. These same representations will have to be 
applied to the photon theory. (A detailed investi­
gation of these algebrae will be published in Nuovo 
cimento.) 

For the photon wave function we shall take the 
half-undor lf! which includes, besides the fields 
E and H, two new qua.Iltities, a scalar, 1/J, and 
pseudoscalar, '¢. Using an 8-row representation 
of the Dirac algebra one can write the free field 
wave equation in the form 

(1) 

or 

where 

rMoc,ock}- oj = 112 {oc;oc~}- a,ki = [st,oc;J = o. (3) 

We define a matrix aL ~I with the properties 

[ocLocJ = [ocLoc;J = [rp.Ll = 0, oc~ =I (4) 

where ri = aiaf are reflection matrices (here 
one does not sum over the indices i ) . It leads to 
the Larmor transformation for ¢: lf!' = aL¢· The 
corresponding transformation in the neutrino the­
ory is the Salam transformation6 q;' = y5q;. 

An explicit expression for a L is 

Besides a L there exists another pseudoscalar 
operator, ia 0 = raL, where r has the proper­
ties 

{rocJ = {roc;} = [r,.r] = 0. 

(5) 

(6) 

Equations (1) and (2) are invariant under Lar­
mor transformations. In order to go over to a 
4-row representation one introduces the Larmor­
invariant wave function 7 (I + a L) 1/J. Then both 
anticommutative groups Ga and Ga* go over 
into the group Gy of the Dirac matrix theory of 
the electron in the representation where charge 
conjugation is represented by complex conjuga­
tion.5•8 

It is interesting to note that these matrices 
are identical with the matrices describing the two 
internal degrees of freedom of Fock's electron. 9•10 

However, they enter linearly the operator of van 
Wyk's generalized gauge transformation.U 

The Larmor photons can have different parity 
and can have a spin of ti even in the case of lon­
gitudinal polarization (longitudinal-magnetic pho­
tons). In order to describe Larmor-nonsymmet­
rical, Maxwell photons one has to go over to a 
wave function which is a simultaneous solution of 
(1) and (2), or, of the following system of equations 
which is equivalent to (1), (2) in this particular 
case: 

(~<+l, v +a 1 cat) <f(x, t) = o, ~<-J, V' <f (x, t) = 0, 

~<±l = (et +a*) I 2. (7) 

The wave equations (1) and (2) are derived from 
the Lagrangian 

(8) 

( for ordinary photons a here has to be replaced 
by [3(+) ). 

The commutation relations are, as usual, 

[<f (x, t), ~ (x', t')J =iS (x- x', t- t'), (9) 
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where the commuting function S is different for 
the Larmor and Maxwell photons: 

=(a, v-alcat)D(x, t), (10) 

SM(x, t)=(a., v-alcat)(a.*, v-alcat)D(x, 1).(11) 

In momentum space SM reduces to the form of 
the Cayley-Klein transformation of the unit wave 
vector k0 = k/k 

SM =(I+ a.·, k0 ) I (I-~. k0 ). (12) 

For the Maxwell field it is possible to utilize 
Eqs. (1) and (2) with the reduced wave function 
l/JM = Tl/J, where 

T = (3 + M) I 4, M = r 1 + r2 + r3 • (13) 

The photon theory, like the new neutrino theory, 
is intrinsically three-dimensional, since both 
groups Ga and Ga* have a diagonal matrix in 
common: a 4 = at = r. Taking this into account, 
one can write the wave equations in a symmetric 
four dimensional form ( - irak - Yk· r - y 4 ). 

The interaction of photons with the gravitational 
field is described by the equations 

where 

(14) 

( hJ.tv ( x) is the gravitational potential ) . The appli­
cation of perturbation theory to this equation is 
facilitated by the smallness of the coupling con­
stant g. The usual formulae apply for the traces 
of products of ai and ai. The traces of prod­
ucts aiak vanish identically. 
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NucLEI containing 30 neutrons have, in most 
cases, some rare distinguishing properties. The 
nuclide 26 Fe30 is the most abundant of all nuclides 
having Z > 10. The relative abundance of this iron 
isotope is 91. 7%, while, for example, the isotope 
26Fe28 (in spite of its containing 28 neutrons) has 
an abundance of only 5.8%. The relative abundance 
of the lightest nickel isotope 28Ni30 is 67 .8%, al­
though in the case of analogous isotopes of other 
elements it usually does not exceed several percent 
or fractions of a percent. The nuclide 24Cr30 is 
different in having a low effective capture cross­
section for thermal neutrons. ( 0.36 barns), like 
nuclides containing the usual magic numbers of 
neutrons. Along with this, the iron and nickel iso­
topes having N = 30 have very high effective 
cross-sections for coherent scattering (without 
change in spin) of thermal neutrons compared with 
other isotopes of the same elements, and very high 
total scattering cross-section ( CTfree ), multiplied 
by [ (A + 1 )/A ]2 to reduce it to the case of the 
nucleus at rest. The corresponding data ( in barns ) 
are given in Table I. 

TABLE I 

Element I N I A l"free [< A+1)/A)21 "coh 

28 541 2.5 2.20 
Fe 30 

56 I 12.8 12.8 
31 57 2.0 0.64 
30 58 24.4 25.9 

l\li 32 60 I 1.0 1.1 
34 62 9.0 9.5 

The effective scattering cross-section of 28Ni30 

is particularly high. It is possible that the proper­
ties of a 30-neutron configuration manifest them­
selves differently in different nuclides, depending 


