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mental data. To get agreement with experiment 
they could essentially still use two parameters. 
The method proposed by us is free of these short­
comings and enables us to consider the interaction 
of excitons with light and various centers. One 
can consider that the result obtained is in satis­
factory agreement with the experimental value of 
AE determined from the position of the maximum 
of the exciton absorption band at A.= 1580 A 
("'7.85 ev). 

In conclusion we note that if we take the trans­
lational symmetry of our problem into considera­
tion we can write the wave function in the following 
form 

lTJ' N-'{, '\1 ( 'k I) lTJ'I 
Ik = .L.Iexp t r 2 I •• 

l 

Expression (2) determines the exciton band, 
whose width is of the order of 
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X IP ~p'/ Cf'2y~ (p) Cf'1 (p) d"d" - exch. term. 

The width (3) of the exciton band is, as fol­
lows from a numerical calculation, far smaller 
than A.E. This is, though, clear from the fact that 
in (3) functions occur referring to different halide 
ions and the integrals in (3) are thus much less 
than the analogous integrals in (1). 

Since the width of the exciton band is much 
smaller than AE, the energy of the excitation can 
be evaluated using the simpler function 'llexc as 
was done in the foregoing calculations. In those 
cases, however, where one is interested in effects 
which depend essentially on the form and width of 
the exciton band, it is necessary to use the more 
exact function (2). 
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THE latest measurements1- 3 of the longitudinal 
polarization of the electrons emitted in /3 decay 
show that the values of the longitudinal polariza­
tion <a 11 > .in cases of allowed transitions and 
first-forbidden transitions in heavy nuclei are to 
good accuracy equal to vIc. As can be rigorously 
proved from the formulas4 for the longitudinal po­
larization of the electrons from such transitions, 
a necessary and sufficient condition for the rela­
tion <a 11 > = vIc is the existence of the follow­
ing relations between the interaction constants 
conserving parity and violating its conservation: 

Cs=-C~, Cr=-C~, CA=C~, Cv=C~. (1) 

With these conditions the interaction Hamiltonian 
takes the form 

{2) 

and the electronic l/J function is involved in all the 
types of f3 interaction through only two components. 

Let us examine the consequences of the relations 
(1), i.e., of the two-component behavior of the elec­
tron in the {3 interaction. When the conditions (1) 
:hold the expressions for the various effects in {3 
decay are decidedly simplified, so that in the case 
of allowed transitions there remain all told just six 
independent combinations of the constants and ma­
trix elements: 

No= (j Cs 12 + i Cv 12) I MF 12 +(I Cr 12 +I CA 12) I Marl 2 , 

Nl =- Ajj' (I Cr 12+ [CAn I Mar 12 

- 2oii'Vj/(j + 1)Re(CsC~ + CvC~)MpM~r. 
Na =(I Cv [2 -I Cs 12) IMp 12 + 1/s (I Cr 12 -I CA 12) I Marl2 , 

N4 = 2aii' Vj/U+ 1) Im (CvC~- CsC~) MFM~r. 

Nv =- f..ii' (I Cr 12-[ CA /2) I Mar [2 

+ 2aii,Y il (j+ 1) Re (CsC~- C vC~) MpM0 r, 

N 5 = 2'iJii' Vi/ (j + 1) Im (CvC~ + CsC~) Mp/Vl~r· (3) 

Here 

f..ii' = [j (j + 1)- j' (j' + 1) + 2]/ 2 (j + 1 ), 
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and MF = {J1) and MaT= (J a) are the nu­
clear matrix. elements. The quantity N0 deter­
mines the total probability of the {3 transition, 
Na the electron-neutrino angular correlation, 

Wev= 1 +(vlc)(N3IN0)(ne'Y), 

and N 1 the angular distribution of the electrons 
from oriented nuclei: 

Wie = 1 +X (vI c) (Nl I No) (nenj), X= (jz) I j 

( ne, v, and nj are unit vectors giving the direc­
tions of the momenta of the electron and neutrino 
and of the spin of the nucleus ) . 

The quantities N0, Ni> and N3 have already 
been determined experimentally. As can be seen 
from the formulas (3), information new in ·principle 
can now be obtained only from experiments in 
which N4, Nv, and N5 would be measured. The 
quantity Nv determines the angular distribution 
of the neutrinos from oriented nuclei (averaged 
over directions of emission of the electron ) 

Wjv = 1 +X (Nvl N0) (nt~). 

Therefore the simplest experiment in which the 
quantity Nv could be determined is a measure­
ment of the angular distribution of the recoil nu­
clei from the decay of oriented nuclei.* The co­
efficient N4 could be found from a study of the 
asymmetry of the distribution of recoil nuclei 
relative to the plane of the electron momentum 
and the nuclear spin. If, for example, we select 
electrons with momenta perpendicular to the nu­
clear spin, the ratio of the numbers of recoil 
nuclei with directions of motion on opposite sides 
of this plane will be 

( 1- _.:.. _(}_ N.) I (1 + _.:.. ~ N. )' 
2 c N0 ; 2 c N0 • 

The quantity N5 could be obtained from experi­
ments on the decay of oriented (or aligned) nuclei 
in which, besides the direction of emission of the 
electron, one also measured the polarization of 
the recoil nucleus or the direction of the y -quan­
tum from a subsequent y -transition. t 

Measurements of the polarization of the elec­
trons (both longitudinal and transverse) from ori­
ented nuclei and in correlation with the neutrinos 
cannot give anything new as compared with the ex­
periments indicated above. For example, the po­
larization of the electrons from the decay of ori­
ented nuclei is given by: 

THE EDITOR 

and the correlation of the polarization with the di­
rection of emission of the neutrino (for unpolar­
ized nuclei) by: 

Here E is the energy of the electron ( in units 
mec2 ), Y1 = [ 1- ( Z/137 )2 ]112, and iio and 170 

are coefficients nearly equal to unity which allow 
for the finite size of the nucleus. Thus measure­
ment of <a> je and <a> ev does not give infor­
mation that is in principle new as compared with 
the experiments that have already been carr~ed 
out, in which the quantities N0, Nt. and N3 have 
been measured. 

It is not hard to see that if we write the coeffi­
cients Ca in the form !Cal ~cpa, the quantities 
Ni ( i = 0, ... 5, v) are expressed in terms of 
only six unknown coefficients: four absolute values 
I Ca I and the two phase differences cp T - cps and 
cp V - cpA· since with the two-component behavior 
of the electron the types A and V do not inter­
fere with S and T. Therefore to obtain complete 
information about the {3 interaction in allowed 
transitions there is in principle no need to meas­
ure experimentally all six quantities Ni in Fermi 
and Gamow-Teller transitions; it is enough if one 
confines oneself to four of them. 

The writers express their sincere gratitude to 
Academician A. I. Alikhanov, K. A. Ter-Martiros­
ian, and A. P. Rudik for valuable discussions and 
remarks. 

*An equivalent of this would be an experiment on a {3- y 
transition which measured the correlation between the direc­
tions of emission of y-quanta of a given circular polarization 
and of recoil nuclei. 

tThe problem of determining the quantity N5 from experi­
ments on the {3- y correlation in the decay of oriented (or 
aligned) nuclei has been considered in detail in Refs. 5 to 7. 
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THE existing techniques of treatment of the elec­
tromagnetic field do not allow to handle the inter­
action of photons with other fields in terms of quan­
tum field theory in a number of cases. These 
problems include the whole complex of gravitation­
electromagnetic interactions: graviton-photon scat­
tering, graviton bremsstrahlung by photons, etc. 
In order to treat such problems one has to formu­
late the wave equation of light quanta in matrix 
form. 

The fundamental difficulty in formulating a 
matrix theory of the photon field lies in the fact 
that the rest mass of the photon vanishes and fur­
ther that the wave function contains both electro­
magnetic potentials and fields. This makes the 
application of the Kemmer formalism exceedingly 
difficult. 1 •2 However, by applying the Dirac alge­
bra3 one can remove this difficulty and it is pos­
sible to formulate a photon theory analogously to 
the Lee-Yang theory4 of rest-mass-zero fermions. 

In Ref. 5 it was shown explicitly how to achieve 
a representation of the 16-row Kemmer algebra 
by 8- or 4-row representations of the Dirac alge­
bra. These same representations will have to be 
applied to the photon theory. (A detailed investi­
gation of these algebrae will be published in Nuovo 
cimento.) 

For the photon wave function we shall take the 
half-undor lf! which includes, besides the fields 
E and H, two new qua.Iltities, a scalar, 1/J, and 
pseudoscalar, '¢. Using an 8-row representation 
of the Dirac algebra one can write the free field 
wave equation in the form 

(1) 

or 

where 

rMoc,ock}- oj = 112 {oc;oc~}- a,ki = [st,oc;J = o. (3) 

We define a matrix aL ~I with the properties 

[ocLocJ = [ocLoc;J = [rp.Ll = 0, oc~ =I (4) 

where ri = aiaf are reflection matrices (here 
one does not sum over the indices i ) . It leads to 
the Larmor transformation for ¢: lf!' = aL¢· The 
corresponding transformation in the neutrino the­
ory is the Salam transformation6 q;' = y5q;. 

An explicit expression for a L is 

Besides a L there exists another pseudoscalar 
operator, ia 0 = raL, where r has the proper­
ties 

{rocJ = {roc;} = [r,.r] = 0. 

(5) 

(6) 

Equations (1) and (2) are invariant under Lar­
mor transformations. In order to go over to a 
4-row representation one introduces the Larmor­
invariant wave function 7 (I + a L) 1/J. Then both 
anticommutative groups Ga and Ga* go over 
into the group Gy of the Dirac matrix theory of 
the electron in the representation where charge 
conjugation is represented by complex conjuga­
tion.5•8 

It is interesting to note that these matrices 
are identical with the matrices describing the two 
internal degrees of freedom of Fock's electron. 9•10 

However, they enter linearly the operator of van 
Wyk's generalized gauge transformation.U 

The Larmor photons can have different parity 
and can have a spin of ti even in the case of lon­
gitudinal polarization (longitudinal-magnetic pho­
tons). In order to describe Larmor-nonsymmet­
rical, Maxwell photons one has to go over to a 
wave function which is a simultaneous solution of 
(1) and (2), or, of the following system of equations 
which is equivalent to (1), (2) in this particular 
case: 

(~<+l, v +a 1 cat) <f(x, t) = o, ~<-J, V' <f (x, t) = 0, 

~<±l = (et +a*) I 2. (7) 

The wave equations (1) and (2) are derived from 
the Lagrangian 

(8) 

( for ordinary photons a here has to be replaced 
by [3(+) ). 

The commutation relations are, as usual, 

[<f (x, t), ~ (x', t')J =iS (x- x', t- t'), (9) 


