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An approximate expression has been obtained for the binary distribution function near a 
second-order phase transition point. This expression is used to find the specific heat 
above the Curie point. 

LANDAU's1 thermodynamic theory of second­
order phase transitions explains many phenomena 
close to the transition point. Many properties of 
matter in more symmetric phases, however, are 
not explained by this theory. This is due to the 
fact that only long-range order is considered, be­
cause the thermodynamic potential is treated as a 
functional of the density function or of the unary 
distribution function p ( r ) . 

The binary distribution function p ( r1o r 2 ) plays 
an important role in describing the properties of 
matter. Allowance for the function p ( r ) alone is 
equivalent to representing the binary function as 
the product of unary distribution functions. This 
causes the degree of the short-range order to be 
replaced by the square of the degree of the long­
range order. Although such a description is suf­
ficient in a less symmetric phase, a detailed knowl­
edge of the binary distribution function is necessary 
in a phase with higher symmetry. 

Let us consider the specific heat close to a 
second-order phase transition, using the binary 
distribution function. The greater the rate at which 
disordering proceeds as the temperature is in­
creased, the higher the specific heat, so that in­
clusion of short-range order should lead to a slower 
increase of the specific heat below the Curie point 
and to anomalous behavior of the specific heat 
above the Curie point. 

To find the binary distribution function, let us 
consider na ( r ) , the density of particles of type 
a at the point r. The mean value na ( r) of 
this function is the unary distribution function 
Pa ( r), whereas na ( r 1 ) n{3 ( r 2 ) is the binary 
distribution function Pa{3(rt> r2 ). Let us first con­
sider the binary distribution Pa{3 ( r 1, r 2 ) for a 
binary alloy with a superlattice. Ordinarily this 
function is approximated in the form of a product 
of unary distribution functions, assuming first that 
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the probability of finding any atom on a lattice site 
is independent of the position of any other atom. 
Second, it is assumed that the probability of finding 
an atom of type a at a given site is independent 
of the types of atoms occupying the neighboring 
sites. The first assumption is of almost the same 
accuracy near and far from a phase transition 
point, and we may maintain it without introducing 
any significant error. The second assumption, on 
the other hand, becomes invalid close to the Curie 
point and must thus be dropped. Therefore in av­
eraging na ( r 1 ) n{3 ( r 2 ) we must take into account 
the correlation which thus arises. 

Similar considerations, obviously, can also be 
applied to other second-order phase transitions 
related to symmetry changes in a body. In this 
connection, the time average of na ( r 1 ) n{3 ( r 2 ) is 
performed in two stages. We first average each 
factor separately over a time interval large com­
pared with the period of vibration of the atom, but 
smaller than the resorption time of fluctuations in 
the order. This leads to the expression 

where Pa ( r) = Poa ( r) + TloPta ( r) is the unary 
distribution function, TJo is the equilibrium value 
of the degree of long-range order, and l::.TJ ( r) is 
the fluctuation in the long-range order at the point 
r. The function Poa ( r) has the symmetry of the 
more symmetric phase, whereas Pta ( r) has that 
of the less symmetric phase. 

Expression (1) is then averaged over a time in­
terval long compared with the resorption time of 
fluctuations in the order, as a result of which we 
obtain 

(2) 
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The mean value D.77 ( rt) D.77 ( r 2 ) can be found by 
means of the thermodynamic theory of fluctuations. 
We expand D.f] ( r) in a Fourier series 

~'YJ (r) = ] Cleilr. 
I 

Then 

~'YJ(r 1) ~'YJ(r2) = ]~G;c1,ei(fr,+f'r,). 
f I' 

Averaging this expression over the volume of 
the crystal, we obtain 

(3) 

~'YJ (r1) ~'YJ (rz) =] c;cteitR, (4) 
f 

where 

According to Landau, 2 if there are fluctuations 
in the order, the thermodynamic potential of the 
crystal can be written 

<D =<Do+~ [: 'Y/2 + ~ 'Y/4 + -~- (V'Y/)2] dV, (5) 

where 17 = 17o + D.17 ( r). Inserting the value of 
D.17 ( r) from (3) into (5) and keeping only those 
terms which are linear in CfCf, we obtain 

<D = <4quil.+ ~<D, 
where .Pequil is the equilibrium value of the ther­
modynamic potential when 11 = 170, and 

v -.--
~<D=y~(A+ocf2)CtCio T>8, (B) 

f 

v -.-
~<D = 2 ~ (2\ A I +ocf 2) CtCt, T < 8, (7) 

f 

where e is the temperature of the Curie point. 
From this we obtain 

c;cl = kT I (A + rx.f2) V, T > 8, 

c;cf = kT I (21 A I+ ocf2) v, T <e. 
(8) 

(9) 

It should be noted that in the immediate neigh­
borhood of a second-order phase transition point 
at which A vanishes, Eqs. (8) and (9) become in­
valid for small f, for in this case one cannot re­
tain only the linear terms in clcf in the expres­
sion for D..P. 

Using the inverse Fourier transform and in­
serting (8) into (4), we find that for T > ® 

~'YJ (r1) ~'YJ (r2) = (kT 147trxR) exp {- (Airx)'f•R}. (10) 

Similarly, for T < ® 

~'Y/ (r1) ~'YJ (r2) = (kT j41tocR) exp {- (21 A I I rx)'f· R}. (11) 

This gives the expression 

Pa~ (rl, Tz) = Pa(rl) p~ (r2) 

+ (kTI4rrrxR) exp {- (Airx)'I•R} p1a (ri) P1~ (r2) 
(12) 

for the binary distribution function for T > ®, and 

Pa~ (rl> r2) = Pa (ri)P~ (r2) 

+ (kT l4rrocR) exp {- (21 A I/ rx)'I•R} P1a (r1) P1~ (rz) 

for T < ®. 

(13) 

The binary distribution function can be used to 
find the energy and specific heat of a crystal. As 
an example, let us consider the specific heat of a 
binary alloy of the type of {3 -brass close to the 
second-order phase transition point. The interac­
tion energy of the atoms of the alloy will be 

where Na is the number of atoms of type a, 
and Uaf3 is the interaction energy between atoms 
of type a and type {3. We shall use the binary 
distribution function as given by Eqs. (12) and (13), 
where the unary distribution function can be written 
in the form Pa ( r) = Po a ( r) + 11oPta ( r). If we 
now recall that for an alloy of the type of {3 -brass 
Pta ( r) = - Ptb ( r) and neglect unity compared with 
Na and Nb, we obtain 

Eint= Eo+ ::. ~~ u (r1 - r2) 

X pi{r1)pi{r2)dV1 dV2, T<8, 

Eint= Eo+ ;: ~~ u (r1 - r2) 

X 4 I kT 
1 

exp {- (Aioc)'1'1 r1 - r 21} rrll r1 - r2 

X p!{r1) pt(rz) dV1 dV2 , T > 8, 

where u = Uaa + Ubb - 2uab• N is the total num­
ber of atoms in the alloy, and Eo is the interac­
tion energy of the atom in the completely disordered 
alloy. 

We now make use of the fact that close to the 
phase transition point 17~ = - A/C and A = a ( T -
® ) and keep only the largest terms. This leads 
to the following expressions for the specific heat 
at constant volume: 

( a k8a'f, ) 
Cv = Cvo + -c + 47tll'I•V2 (8 -T) 

(14) 
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(15) 

As has already been noted, Eqs. (8) and (9) are 
invalid for small f in the immediate neighborhood 
of the phase-transition point. This is true also for 
Eqs. (14) and (15). A necessary condition for their 
validity is ArN2 » Crt1/4, if 112 = (kT/47T<:l!d) e-nd. 
Here d is the distance between neighboring atoms, 
and n = (a IT - ®1/aqt/2 

Noting that a2/2C is equal to the discontinuity 
in the specific heat per unit volume ~Cp, and2 

that a Rl ®ad2, we obtain the following condition for 
the validity of Eqs. (14) and (15): 

j T- E? I /8 2> (kjl6Trd3D.Cp) exp {- (j T- 81 /8)'1•}. 

Using the value of Sykes and Wilkinson3 for ~Cp 
of .B-brass, we obtain IT- ®I/®» 0.007. 

Within the limits of applicability of the expres­
sions obtained, the inclusion of short-range order 
in the ordered phase leads to an insignificant de-

crease in the specific heat. In the disordered 
phase, the inclusion of short-range order adds the 
following correction term to the specific heat: 

Cv = Cvo + const;VT- H. 

For .B-brass, with (T- ®)/® = 3 x 10-2, this 
additional correction term supplies about 5% of the 
discontinuity in the specific heat at the Curie point. 
This conclusion is in satisfactory agreement with 
the measurements performed by Sykes and Wilkin­
son.3 
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It is shown that part ( 20 to 30%) of the low-energy flux (range R < 1. 7 g-em - 2 AI) registered 
in the cosmic radiation of the stratosphere, is genetically related to nuclear-disintegration 
products. 

FROM the number of particles N (em - 2 sec - 1 ) 

and the produced ionization I ( pairs of ions per 
cm3/sec ), measured in the global intensity of cos­
mic rays, 1 •2 it follows that the average ionizing 
ability of charged particles in the atmosphere, 
K = I/N, increases considerably with altitude, and 
that at an altitude of 10 to 17 km it exceeds the 
average ionizing ability of relativistic particles 
by a factor of 1.5 to 1. 7 (Ref 3). This is evidence 
that there exists at these altitudes a considerable 
flux of secondary strongly-ionizing particles. The 
ionization due to these particles can be estimated 
from the value of the "excess" ionization, defined 

as the difference Iexc =I - krN where kr is the 
average ionizing ability of relativistic particles. 
The value of Iexc reaches one-third of the total 
ionization current.4 Experiment has shown4•5 that 
the variation of Iexc with altitude and its latitudi­
nal effect are identical with the corresponding re­
lations observed for stars in photoemulsions, and 
for ionization.impacts observed in chambers. This 
suggests a possible genetic relationship between 
-this variation and nuclear disintegrations. 

Quantitative measurements of the ionization im­
pacts, which experiments5 have shown to be essen­
tially due to strongly-ionizing protons and to heavi-


