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We take account of thermal motion of electrons and ions in considering the propagation of 
magneto hydrodynamic waves in an ionized gas. 

As has been shown by Astrom1•2 and Ginzburg,3 

magnetohydrodynamic waves in an ionized gas are 
nothing more than low-frequency ordinary and ex­
traordinary electromagnetic waves, familiar from 
the theory of the propagation of radio waves in the 
ionosphere. The frequency of these waves is much 
less than the Larmor frequency of the ions. In the 
above-cited works the electron and ion motions 
were described by equations for their mean veloci­
ties. The phase velocity V q, of a magnetohydro­
dynamic wave is usually much less than the veloc­
ity of light c, and may be compar:able with the 
mean thermal velocity v!f and vt of the elec­
trons and ions. One can therefore expect that if 
V q, ~ v!f, the thermal velocity of the charged par­
ticles will strongly influence the propagation of the 
magneto hydrodynamic waves. 

If the frequency w of the magnetohydrodynamic 
waves is much less than the frequency v c of 
"short-range" collisions, and if the wavelength A. 
is large compared with the mean free path, a local 
Maxwell distribution is established during a time 
on the order of 2rr/w. In this case, as is well 
known, the equations of hydrodynamics can be used, 
and it follows that in addition to magnetohydrody­
namic waves of the Alfven type, two mixed magneto­
sound waves may propagate in the plasma. If, on 
the other hand, . w » v0 , the thermal motion of 
the charged particles can be taken into account by 
finding the magnetohydrodynamic wave propaga­
tion using the kinetic equation with self-consistent 
interaction. 4 

The present work is devoted to the kinetic the­
ory of magnetohydrodynamic waves propagating in 
a plasma at any angle e with respect to an exter­
nal magnetic field. "Short-range" collisions lead­
ing to damping of the waves are not included. The 
case e = 0 has been treated by Gershman5 (see 
also Dungey6 ). It is found that if e = 0, the "short­
range" collisions give only a small contribution 
even if it is not true that v0 « w. 3•5•6 In any case, 
the effect of "short-range" collisions will be small 
for arbitrary e if lie « w. 

1. DISPERSION EQUATION 

Consider electromagnetic waves propagating in 
a plasma of electrons and singly ionized ions. Let 
foa be the equilibrium value of the distribution 
function for particles of type a ( a = e denotes 
electrons, and a= i denotes ions). We shall 
write a kinetic equation for fa ( v, r, t), the small 
difference between the actual value of the distribu-
tion function and f0a, assuming that the frequency 
of the waves is so high that we may neglect the 
collision integral in this equation. We then have 

~+v~+--=.::_E ato~ -w' a[, =0 
at ar m~ av H oil ' (1) 

f o~ =no (m. I 2r::T ~>"' exp (- m~v2 I 2T ~). 

Here ea and rna are the charge and mass of the 
particles of type a (with ei = e > 0 ) , H0 is the 
external magnetic field strength, ,J is the polar 
angle in velocity space ( v is the velocity of par-
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ticles of type a, and the z axis is parallel to 
H0 ), T a is the temperature of the gas of particles 
of type a, and n0 is the equilibrium electron 
density, which is equal to the equilibrium ion den­
sity. The electric field strength is given by 

. 1 iJ2E 47te a r\ \ \ 
~E- grad d1v E -(;2 at2 = C2 at\) vf,. dv-.) vfedv) · (2) 

Let the external action perturbing the equilib­
rium state of the plasma be turned off at time t = 0. 
Then, using a Fourier-Laplace method to solve Eqs. 
(1) and (2), it can be shown that after a sufficiently 
long time t the Fourier components of the elec­
tric field strength will be proportional to e -iw' t. 
The complex frequencies w' = w - iy are defined 
as the solutions of the dispersion equation for the 
lowest y. To obtain the dispersion equation we 
insert expressions for fa and E proportional to 
ei(kr-w't) into (1) and (2), where k is a given 
real vector and Imw' < 0, which means that fa 
and E are in the form of plane waves. The con­
dition on w' corresponds to solving Eqs. (1) and 
(2) by a Laplace transform in time. The dispersion 
equation will then be of the form 7 

An'4 + Bn'2 + C = 0, n' = kcjw', (3) 

where 

A = En sin2 a+ Eaa cos2 e + 2s13 cos e sin 6, 
(4) 

B = 2 (s12s23 - s22s13) cos ll sin ll + si3- s11s33 

- (s22s33 + s~3) cos21l - (s11s22 + si2) sin2 fJ, 

C = Det I s;k I = saa (s11s22 + si2) + s11s~3 + 2s12s23s13 - s22s~3 . 

Here e is the angle between the wave vector k 
and the magnetic field H0• If Imw' < 0, the di­
electric constant Eik ( w', k) (with i, k = 1, 2, 3) 
is of the form 

& 

X ~ vk exp (- iaa sin ljl- ib .. lj>) dlj> dv, 

aa. = kxv j_fw'ft, ba. = (kzVz - w')fw'ft. 
(5) 

The z axis is parallel to H0, and the x axis lies 
in the plane containing k and H0• 

Let us write Eq. (5) in a different form. Con­
sider, for example, E11 • Bearing in mind there­
lations 

00 21t 

e-iasiR<)i= ~ Jn(a)e--in<)i; ~eiasin<)i-ino!Jdlj>=2nln(a) 
n--oo 0 (6) 

and the expression for the second exponential inte­
gral of Weber, 8 we find that 

where In ( IJ-a ) is the modified Bessel function, 
and 

Va. = n;;w'2, D.a. = (41tnoe 2/mS'·. fLa. = (kxV[/w'ft) 2 ; 

(8) 

The series of Eq. (7) can be summed by noting that 

oo oo I (:A) 
( ei" cos '~>+iy'P dcp = i ~ _n_ (Im y > O). (9) J ~ y-n 
0 n--oo 

After integrating over t, we obtain an expression 
for E11 in the form of a single integral. The other 
components of Eik can be expressed similarly. 
As a result we arrive at 

nz oo 

e:11 = I - i ~ --" -I exp {fL (cos cp - I) 
a. (,)'l"'lil~ a. 

j(,)' x! 2} (. (,)' 1 2 ) • + -cp- -4 cp t--- - 2 Ka.C{J smcp dcp, 
l(,)lil l"'lil 

n2 oo 

s12 = i ~ -"- ( exp {!La. (cos cp- I) 
ct (J)'(J)~t 

+ ~cp-S cp2} (cos cp- I)(~-_!_ x2cp) dcp, 
l"'li I 4 I "''tt! 2 a 

nz oo 

e: 13 =-icotll~--"-C exp{fL (coscp-I) 
" "''I (,)li I~ a 

co 

X I exp {fL (cos cp- I)+ i"'' cp- l(~ cp} (I- cos cp) dcp, 
J " I(,)"- 1 4 o H 

x, = V2kzV~ /I WH 1. 
(10) 

Equations (10) for the Eik are analytic functions 
of w' over the whole w' plane. We shall use 
them in solving the dispersion equation (3). We 
note that if H0 is replaced by - H0, the compo­
nents Ett. E22 , E33 , and E13 remain invariant, 
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whereas E12 and E23 change sign. 
Let us rewrite Eq. (10). Expanding exp (J.Lacoscp) 

in Eq. (10) in a series of the In ( J.La) functions 
and making use of the relation9 

z \ e-t• -
I (z) = y;J z _ t dt = - i V 1t zw (z), 

c 
z 

w(z)=e-z'(l + :~~el'dt), (11) 
0 

where the integration over t is taken along a con­
tour C going from - oo to + oo and circling the 
point t = z from below, we obtain 

(12) 

2v z"' oo ~ t• -t• 
Eaa = 1 - ~ v"- 0 e -I-'" ~ In (fl. ) _e_ dt, 

...:::.; rc ...:::.; " z•- t 
:x n=-co C n 

where ei = 1 and ee = -1. If cos (J > 0, the in­
tegral over t in (12) is taken along_a contour C 
that circles t = zg from below, whereas if cos (J 

< 0, the contour C passes above t = zg. To be 
specific, we shall assume below that cos (J > 0. 
We note that expression (12) for Eik can be ob­
tained directly from an equation of the form of (7) 
by replacing the integral over t along the real 
axis by an integral along C. 

In attempting to determine the excitation of 
electromagnetic vibrations in a plasma by external 
currents, one must also consider Eq. (3), which 
defines the wave number k' = k + iK as a function 
of the frequency w [in Eqs. (3), (4), and (10) to 
(12) one must set w' = w - io, where w is a 
given real number and o - + 0 ] . 

Equation (3) can be solved in several limiting 
cases. If V <I> » vff (and T a - 0), Eq. (12) leads 
to known expressions for the Eik (quasi-hydrody­
namic approximation), and Eq. (3) gives the index 
of refraction for the ordinary and extraordinary 

waves. If the separate terms entering into A are 
much greater than IB/n21 and IC/n41, we obtain 
by setting A = 0 the dispersion equation for lon­
gitudinal vibrations of the plasma in the magnetic 
field. In the present work the dispersion equation 
(3) is treated for low-frequency waves, when w 
«wk. 

2. ANALYSIS OF THE DISPERSION EQUATION 

We shall now consider the dispersion equation 
(3) for a strong magnetic field, when kv!f « w~. 
In view of these inequalities, we may consider that 
J.La « 1 and lzgl » 1 for n = ±1, ±2, .... The 
functions In ( J.La) and e -J.La in (12) can therefore 
be expanded in powers of J.La, and in the resulting 
sums we need retain only the first few' terms. In 
addition, the integrals taken along C which con­
tain zg (with a = ± 1, ± 2, ... ) will be expanded 
in the asymptotic series 

z ~ e-1' 1 3 . v- --z• l(z)=--- --1 dt~1+-2 .+-4 ,+ ... -t 1tZe 
Yrc.z- z z 

c (13) 
(IRezl~ 1, Imz~ 1). 

Considering further that I w' I « w~, we obtain 
the following expressions for the Eik: 

2 '2 
2 [ ui 1 3~in ( 2 c 1 · 2 c) me ] 

E = nA 1 + - + ·- - + -- COS v - - SlD v + -
11 vi ui ui 4 mi ' 

in~ [ 2 , 2 ( 2 3 · 2 )] s1z = Vu~ 1 +~in cos a- 2- sm 6 , 
l 

232n'2n2 

s13 =-_._,_A cos 6 sin fi; 
ui 

s22 = s11 - 2~7n' 2n~ sin 2 6 [1 (z~) -t- ~; I (z~)] , 

ivisina i e 
s2~ =-V [I (z0)- I (z0)], 

ui cos a 

vi [ T. . T. J 
Saa = g2 '2 2 a I ++-I (z~) - -r' I (z~) ' 

, in cos e e 

where 

(14) 

(15) 

nA = (v;/ui)'1• = (4Momic2/H~)'1•, ~" = v~/c, u" = w2 j (w'J.J)2 • 

If y a = - Im z~ « 1, expressions (15) for E22 , 

E23 , and E33 , which contain the integral I ( z~ ), 
can be simplified .. In this case we expand w ( z) 
in Eq. (11) in powers of y = - Im z. Dropping 
terms of order y, we obtain (noting that z = 
X- iy) 

I (z) =I (x) + 0 (y); I (x) = 2xF (x)- i v; xe-x', 

X 

F (x) =e-x'~ e~'dt. (16) 
0 

Taking (16) into account, (15) can be written 
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En- s 22 = 2~Jn' 2n~ sin2 6 [2xtf (x;) + 2xeF (xe) TeiT; 

- i y; X;e -x7- i y;xee -x; TeiT;], 

ivi sine 
s23 = - y _ [2x;F (x;)- 2xeF (xe) 

u; cos e 
- -x2 - -x2 

- i V 1t X;e i + i V 1t Xee e], 

where 

x. = (V-2 ~.n cos 8)-I, n = kcjw. 

In the most interesting cases, in which it is pos­
sible to speak of wave propagation at all, the index 
of refraction n for magnetohydrodynamic waves 
is on the order of nA. We shall assume that nA 
» 1, or that V <I> « c, since only then will the in­
elusion of thermal motion give significant correc­
tions to n'. Equation (3) then becomes 

(cos2 a n'2 - En) (n'2 - 822- s~3 I Eaa) 

= - 8~2 - 2n'2 cos a sin as12S2a 1833 + .... (18) 

In view of the fundamental inequalities 

Ve ~vi~ ui ~ 1 ~ fif fl 2jUi ~ ~; n 2/Ue. (19) 

the terms discarded in (18) are small compared 
with those which remain. 

Let us now go on to a consideration of (18) for 
various special cases. 

(a) Consider first propagation of magnetohydro­
dynamic waves along the magnetic field. Setting 
(} = 0, we obtain Eu = E22 and E13 = E23 = 0. The 
left side of (3) then breaks up into the product of 
three factors. We equate each of these to zero, 
obtaining 

0 '2 -- lf 2 0 
Eaa = ; n - sn + V - s12 = . (20) 

The first relation in (20) gives the dispersion equa­
tion for the longitudinal plasma vibrations investi­
gated by Vlasov4 and Landau. 10 The second is the 
dispersion equation for ordinary and extraordinary 
electromagnetic waves which, for (} = 0, are purely 
transverse ( div E = 0 ) . This equation agrees with 
the dispersion equation obtained by Gershman.5 If 
we take account of (19), Eq. (20) gives the indices 
of refraction for the ordinary and extraordinary 
waves in the form 

ni. 2 = n~/(1 + ::;); ::; = ~7n~IV/.4. (21) 

According to this equation, the thermal motion of 
the ions gives corrections to the indices of re­
fraction which are significant only if V <I> « v~, 
when j1~n~/v'Uf .... 1. If we include the exponen-

tially small terms in (13), we obtain the damping 
constant 

( y) -. /1t U; 1 + cr f ( i )2}· 
\w 1,2 = J1 8~in1,22=fcrexp t- z±1 , 

. (1 'rJ jw)2 

(z' )2- ' H 
±1 - 2"2 2 

~-'zn1.2 

(22) 

The imaginary part of the wave vector k' will be 
equal to (the frequency w is given) 

I V rr ui { ( i )2} (x kh,2 = -8 ~3 _-exp - z±1 . 
, ,nl.2 

(23) 

Both ( y I w h 2 and ( K/k h 2 are extremely small 
because 11in/..fUt « 1 even' if ~n)._ ..,. ..fUt. 

(b) Let us now consider the propagation of mag­
netohydrodynamic waves at a small angle (} « 1 
to the magnetic field. We find from (18) that-if 
13~n~/-/Ui « 1, then n1 ~ n2 ~ nA. Writing 

n~,2 = nA (I + q~.z>; q~.2 = q1.2 + irl.21w; 

'h,2 = ><1,2c In A (I q~.2 l ~ I), 

we find that the quantity 

(24) 

q" = q' - _.!._ (-1- + _! + 3?7n~ + .5!_ + ... ) , (25) 
1,2 1.2 2 n~ u1 ui m; 

is given by 

.. 2 + 1 (eu - e22 e~3 02 ) , q - ------v q 
1.2 2 n~ n~ eas 1,2 (26) 

+ ~ ( ei2 + 62 e22 - eu + 6 ~ -=k_ + 2 e12e2ae)· = 0 
4 n~ n~ n~ e33 n~ eaa • 

We now make use of expressions (17) for Eu -

E22 , E23 , and E33 , obtaining 

q~.2 = ~.:._ (I - Mn~D) + H-;- ( 1 + ~7n~D)2 

(1 + 32n2 ) 1'i• + 4~ 1 A [I+ ~Jn~ -262~;n~ (!; -Ie) Glr , (27) 
l 

D = 2I; + 2IeTe/T; + (/;- Ie) 2 I(!+ T;/Te- Ii- IeT;/Te), 

G = [I + T;/Te- I1- IeTdTeP, 

I. = I (x.), x. = (Y2 ~.nAP. 
Let us now consider (27) in some special cases. 

Let the phase velocity V <I> = c/nA be much greater 
than the mean thermal velocity of the ions, or 
11inA « 1. Equation (27) then leads to 

, e• 1 1/ e• 1 
Req1.2 = T +2 Jl T +-u;; (28) 

(: )1,2 = Y 3~ 62 :; ~enA (I+ ye•: 4/u;) exp{- 2~;n~}. 
(29) 

It follows from (29) that as the phase velocity 
decreases, the damping increases. If 11enA « 1, 
the ratio y/w is exponentially small. The damp-
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ing given by (29), however, will be much greater 
than that given by (22) for all except the smallest 
values of e, since the quantity ui /2,B~ni, whose 
exponential enters into (22), is much greater than 
1/2~rt~. If Vw ~ vf, then (y/wh,2"' 82,BenAme/mi. 
As is seen from (29), the extraordinary wave is 
more highly damped than the ordinary one, or y2 

> 'Yt· 
Equation (29) is valid if .Bin A « 1.. If, however, 

.BinA "' 1, which means that Vw "' v~, then as 
follows from (27) we have 

Req~.2 ~I IVU,:, (1lwh.2 ~a1fl2 + a264 IVU,:, 

where a 1, 2 "' 1 . and 82 ~ 1/fui . 
For V <I> « v1-, Eq. (27) gives 

or 

(30) 

Equations (30) to (32) are valid only if .BinA » 1, 
,B~ni/.ftli « 1, and ,BinAe2 « 1. If however, ,BinA 
» 1, but the inequality .Bini/.ftli « 1 is not ful­
filled, the initial approximation n1 R~ n2 R~ nA be­
comes invalid. Let .Bini "' .JUi. Then assuming 
that in the zeroth approximation the indices of re­
fraction of the ordinary and extraordinary waves 
are given by (21), we obtain 

(iJ;n,1 ~~ ~ 1). (33) 

If a= .Bini/lui « 1, then (33) leads to Eq. (31) 
for y12 • Thus Eqs. (27) to (33) for small e will 
give Y1,2 for all a. 

(c) Let e "' 1. The right side of (18) contains 
quantities small compared with the individual terms 
on the left side. Therefore we can obtain an ap­
proximate solution of (18) by equating each of the 
factors on the left side to zero. The index of re­
fraction of the ordinary wave is then given by 

n1 = nA I cos a. (34) 

We note that Astrom calls the wave whose index 
of refraction is that given by (34) the extraordinary 
wave. 

Let us find the corrections to (34). Writing 

n~ = nA (I+ q~) I cos6, q~ = q1 + i (ilwh. 
(35) 

we find from (18) that 

q' = q" + ..!._ (-1- + _!__ + 3~~n~ (I- _!_tan 26) + _5.) , 
1 1 2 n~ u, u, 4 m; 

, [1 + [;~n~ (1- 3/2tan26)J' [cot2 e + 2~7n~ Ue- I,) a] (36) 
q = ' 

1 2u; (1 + ~~n~b) (37) 

a-1 =[I + ~~n~ (1- ai2tan26)] [I + T;/T,- I,- I,T;jT,], 

b = (!,- 1,)2 I (1 + T;/T.- I,- I,T;/Te) + 21, + 2/,T,IT;, 

I~= I (x~), x~ = <V2 ~tnA)-1 • 

If ,BinA « 1, we obtain 

ql--- - ' _ 1 ( 1 + 1 + co!2 6 + me) 
2 n~. u, m, (38) 

( y) yn me ~en A 2 - = -8 ---cot26exp{-x.}. 
w 1 m, u, (39) 

If .Ben A « 1, the quantity ( y/ w )t is exponentially 
small, while if .Ben A "' 1, we have ( y/ w h "' 
me.BenA /miui · 

If ,BinA "' 1, it is easily seen from (37) that 

Re q~ ~ Im q~ ~ 1 u-;1. 

Finally, if ,BinA » 1, Eq. (37) leads to 
Q3 3 (l) = cot26 (1- 3/2tan26)2 ~, 

w 1 Vsn u, (40) 

and Im qi » Re qi. Equation (40) is valid if 
(y/w)t « 1, or if ,Bfn~/ui « 1. If ,Bfn~/ui"' 1, 
it follows from (18) that Re n' "' Im n' "' nA. Thus 
the ordinary wave is weakly damped ( 'Yt « w1 ) 

only if ,B~nl/ui « 1. 
(d) Let us now consider the propagation of the 

extraordinary wave for e "' 1. We equate the sec­
ond factor on the left side of (18) to zero, writing 

n'2 - e11 + (e11 - e22)- e~a/en = 0. (41) 

Assuming that E11 R~ ni is much greater than 
either IE11- E22 l or IE~3 /E 33 I, we can use (41) 
to find the index of refraction of the extraordinary 
wave (which Astrom calls the ordinary wave ) . 
This is 

(42) 

Let us now find the corrections to (42). We set 

n~ = flA (I+ q~); q~ = q2 + i (llwh; 

lz = ><2clnA; I q~ i <S.: I. 
(43) 

Then it follows from (18) that 

(44) 
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Xe = (ll2~enA COS &fl. 
(45) 

Comparison of (29) and (45) shows that if f3enA 
~ 1, the extraordinary wave is damped much more 
strongly than. the ordinary one, or y2 /y1 ,.... ui » 1. 

If /3inA « 1, then lq21 « 1. If, on the other 
hand, f3inA ,.... 1, then n' must be found from (41), 
which then becomes 

+ 2/ (z~) J = 0, 

(46) 
where I ( z~) is the integral defined by (11). 
Equation (46) is obtained on the assumption that 
lf3en' cos 81 » 1. It follows from (46) that Re n2 
,.... 1m n2 ,... nA, which means that if /3inA ,.... 1, the 
extraordinary wave is strongly damped. Exact 
solutions of ( 46) can be obtained numerically, using 
the tables of Faddeeva and Terent' ev. 9 

We now make one remark regarding the propa­
gation of electromagnetic waves perpendicular to 
the magnetic field. As 8 - 1r/2, we find that 
lzgl - oo, and the imaginary parts of Eik in (12) 
vanish. Therefore the damping of the electromag­
netic waves for 8 = 1r/2 is determined entirely by 
"short-range" collisions. 

3. CONCLUSIONS 

The kinetic equation was used to investigate the 
propagation of magnetohydrodynamic waves whose 
frequency is much greater than the frequency of 
"short-range" collisions of charged particles both 
with each other and with neutral particles. It is 
shown that magnetohydrodynamic waves propagat­
ing at an angle 8 ~ 1r/2 are damped (damping is 
similar to that found by Landau10 for longitudinal 
plasma waves). The damping constant increases 
as the phase velocity V <I> ,.... c/nA decreases, and 
is no longer exponentially small when V <I> ,.... v~. 

If 8 « 1 and V <I>« v~, the damping of magneto­
hydrodynamic waves is small only in a very narrow 
angle interval 82 « 1//3inA « 1. If 8 ,.... 1 and 
V <I> ,.... v~, the damping constant y2 for the extra­
ordinary wave is much greater than the damping 
constant y 1 for the ordinary wave, and we may 
write y2 /y1 ...., ui » 1. The ordinary wave is . 
strongly damped ( Re ni ,... Im nj_) for V <I> « v~, 
when {3~n~ ,... ui. Strong damping ( Re n2 ,... 1m n2 
,... nA) does not allow the extraordinary wave to 
propagate 'Yhen the phase velocity becomes of the 
order of v~. 
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of Sr87 and Mg95 

· · · + >< iFio (io +1) 

(L + 1) I BZ i 2- L I Bt 12 

\.l ... 
en= 1- LIJircJ(.L. 

lEy> 50 Mev i EY >50 Mev 

r = fL•I!lt 

Reads 

a) positrons of energy up 
to 0.4 E, b) positrons 
of energy up to 0.3 E. 

I~= (4n)2 ... 

Should Read 

Nuclear magnetic moments 
of Sr87 

••• -- >< V io (io + 1) 

L (L + 1) [ [ BZ 12 -! Bt i' J 

1 \.1 ... 
en = - L.J ]l;t (1. 

1Ey<50Mev !Ey>50Mev 

a) W < WH , b) W > WH 

Should Read 

a) positrons of energy up to 
0.3 E, b) positrons of 
energy up to 0.4 E. 

1~ = (4n)5 ••• 




