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The only really interesting values of the param
eter s are those much greater than unity. In fact, 
it follows from (23) that 

(39) 

and the ratio of the free paths must be greater 
than unity for the very existence of the CW, as 
already mentioned at the beginning of this section. 
(On the other hand, s is bounded from above by 
the condition that the wave must be weak.) In the 
case when s » 1, all the formulas become sub
stantially simplified and an approximate relation 
can be established in explicit form between the 
lower temperature of the CW and the value of the 
adiabatic cooling. In this case the temperature 
T 0 about which the range is expanded drops out 
entirely from the equation. 

Using the asymptotic expression Ei ( s) ~ es/s 
for s » 1, and noting that when s » 1 the root 
of (35) is f3 ~ 1, (Tf ~ ln s), we obtain from 
(31) and (35) 

8r ~In Ei (s)- 1 ~s-Ins- 1. (40) 

From this we obtain from (38) 

82=-lns. (41) 

Returning to the true temperature with the aid of 
(25) and taking (27) and (23) into account, we obtain 

the desired relation 

AI (T 2 ) =52 = aT~, (42) 

It must be noted that according to (37) ®1 > ®f > 0, 
and according to (41) ®2 < 0, i.e., the free path is 
expanded in accordance with (23) about the inter
mediate temperature in the CW: 

T2<To<Tr <Tl. 
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Scattering of fast nucleons by black nuclei possessing vibrational or rotational levels is con
sidered in the adiabatic approximation. It is shown that, in the diffraction region of scatter
ing angles, the shape of the angular distributions of nucleons of definite energy, scattered 
with excitation of a given collective level of an even-even nucleus, does not depend on whether 
the level is a rotational or vibrational one. 

WE consider the scattering of fast neutrons or 
protons from nuclei possessing vibrational or ro
tational excited states.1 We shall assume that the 
wavelength of the incident particle k-1 is much 
smaller than the nuclear dimension R ( kR « 1 ) , 

that the energy of the proton significantly exceeds 
the value of the Coulomb barrier ( Ze2 /RE « 1), 
and that the nucleus absorbs all particles incident 
upon it (black nucleus ) . These assumptions cor
respond to neutron energies E ~ 10 Mev and pro-
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ton energies E ~ 20 Mev. In this case, it is appro
priate to make use of the adiabatic approximation, 
according to which the nucleus can be regarded as 
fixed during the scattering process. The condition 
of applicability of this approximation2 can be writ
ten in the form ( ~E/E ) kR « 1, where ~€ is the 
energy of the collective excitation. 

As is known, the determination of the effective 
cross sections in the adiabatic approximation re
duces to the calculation of the amplitude of elastic 
scattering of particles by a nucleus of fixed orien
tation f ( azm, ~). This amplitude depends not 
only on the direction of the scattering ~ = ( J, 4l), 
but also on the parameters azm which determine 
the shape of the nucleus ( in the fixed system of 
reference ) : 

r (n) = R(1 + 2>·lmYlm (n)), 
lm 

where Yzm ( n) are the normalized spherical har
monics. In the case of nuclei possessing vibration
al levels, 1 the quantities azm can be connected 
with the operators of creation and annihilation of 
excitation quanta ( phonons ) having a momentum l 
with a projection m on the fixed axis: 

./~Pi m* 
~[m=JI 21+1·k-(btm+(-) bt.-m), (1) 

where Pl is the amplitude of the zero vibrations 
about the equilibrium sphere of radius R. The 
operators bzm, him act as usual on the wave 
functions of the vibrational states 1/Jn ( az m>= 

btfin (~) = Vn ~n-I (~); b*tfin (~) = Vn + 1 trz+I (x). (2) 

If, on the other hand, the nucleus possesses rota
tional levels, and its surface in the characteristic 
system of reference of the nucleus is described by 
the equation 

R(tL) = R(1 + ]~tPI (tL))' 
l 

then the parameters azm depend in the following 
way on the angles w ( 8, <P ) which define the direc
tion of the axis of symmetry of the nucleus in the 
fixed system of coordinates: 

4mx 1 • 
~lm (w) = 21 + 1 Yzm (w). (3) 

In small-angle scattering 8 < 1 and for the con
ditions given above the amplitude of the elastic scat
tering of nucleons· from a fixed nucleus can be given 
in the form2 

f (w, rl) = fe (w, r.l) + {d (w, rl). (4) 

Here fe ( w, ~) is the scattering amplitude of par
ticles in the electric field of the fixed nucleus. 

Considering scattering at small angles, we can 
neglect the finite charge distribution in the nucleus. 
For a sufficiently small departure of the nuclear 
shape from spherical, when the conditions 

rx."ZfNtcv «; 1 or (p.j R) Ze2 jav <{. 1 (5) 

are satisfied for nuclei with rotational or vibra
tional levels, respectively, the effect of multi pole 
electric interaction on the scattering can be taken 
into account by perturbation theory. In this case, 
we can write down the scattering amplitude in the 
electric field of the nucleus in the form 

fe (w, rl) = fc (6) +] ~lm (w) (k' I Vtm I k); 
lm 

_ 2"1] r (1 + i"IJ) { . e}. _ Ze2 

fc (6) -- k r (1 - i"IJ) exp -2'tj tIn 2 , "'II - 1W, (6) 

k' IV I k - f.L 3Ze•R.l (" •"+ ( ) -l-IY ( r) .!.+ ( ) d < lm >--2d2(21+1J)'f-k• r r lm r 'fk r r, 

where k and k' are the wave vectors of the in
cident and scattered particle, respectively, and 
the if{< r ) are the wave functions that describe 
the scattering in the Coulomb field Ze2/r (Ref. 3). 

According to Ref. 2, the second term in Eq. (4) 
has the form 

2 (I+i1l) ! 
fd(w,il)=i(kR) k ~(w)t-2 (Hi1l) ~xH21r.J0 (x)dx; 

0 

t = kRO [~2 (w) cos2 (q;>- <P) + sin2 (?- <P)]'I•; (7) 

qw) = [1 + sp; 8 = ~ V21 ! 1 ~lo(w). 
l 

When 11 = 0, the amplitude of fd ( w, ~) describes 
the diffraction scattering of neutrons; it is there
fore natural to call it the diffraction part of the 
amplitude of f ( w, ~ ). 

We.shall assume that the nucleus is in the 
ground state prior to scattering, and shall limit 
ourselves below to a consideration of elastic scat
tering with a transition of the nucleus from the 
ground to the first excited state. We shall con
sider only quadrupole deformations of the nucleus, 
assuming that the only azm different from zero 
are those with l = 2. In this case it is appropri
ate, for calculation of the effective cross section, 
to expand the amplitude f ( w, ~) in a series of 
powers of the deformation parameter azm. If 
condition (5) is satisfied, then Eq. (6) already gives 
essentially this expansion for the amplitude 
fe ( w, ~ ). In order to obtain a similar expansion 
of the diffraction part fd ( w, ~ ), it is useful to 
expand in powers of € in Eq. (7). Denoting 
kR8 = a, we get 

" 
fd (w, Q) = + (kR)2 (Hi1l) {a-• (I+i"r.) ~ xH2i1) Jo (x) dx 

0 
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+ cx2o (w) V 4~ [i'Yja-2 (Hi~) ~ xH2i~ J0 (x) dx - -~- J0 (a) J 
e 

- (ei2<I> 0(22 (w) + e-i2<1> 0(2-2 (cu)) i v~ (8) 

a 

x [(I +h1) a-2 (Hi~) ~ xH2i~ J0 (x) dx- i- J0 (a)]}+ ... 
0 

When calculating the effective cross sections, 
we can limit ourselves to the expansion terms 
written down, if 

cx2kRfJ~ I or (P2/R)kRfJ~: I. (9) 

We can obtain these conditions if we compute the 
terms of order a~m and a~m and compare their 
contribution to the scattering cross section with 
the contribution from terms of zeroth and first 
order in a 2m, putting· TJ ,.... 1. 

In adiabatic approximation, as is well known, 

the differential scattering cross section, for which 
the nucleus undergoes a transition from the state 
q; v ( w ) to the state q; v' ( w ) , is determined by the 
square of the modulus of the matrix element 
<cp~t(w)f(w, Q)q;v(w)>. In particular, the ex
citation cross section of the rotational state (I, M) 
of the even-even nucleus has the form 

OJM (Q) = I (Y;M (w) f (w, Q) Y 00 (w)) J
2 • (10) 

Similarly, in the case of scattering from a nucleus 
with vibrational levels, the excitation cross section 
of n phonons ( l, m ) is equal to 

cr);:l (Q) =I(~~ (cxlm) f (cxlm' Q) ~o (or;lm)) 12· (11) 

In this case the matrix elements of the amplitude 
f ( a 2m, Q ), which determine the elastic and in
elastic scattering cross sections, have in accord 
with Eqs. (1, 2, 4, 6, and 8), the form: 

a 

(~~ (cx2m) f (cx2m' Q) ~o (cx2m)) = {· (kR)2 (Hi~) a-2 (Hi~) ~ xH2i~ Jo (x) dx + fc (fJ); 
0 

. a 

(~~ (cx2o) f (cx2m,Q) ~o(cx20))= ~ {i (kR):Hz~) [i'Yja-2 <Hi~) ~ xH2i11 10 (x) dx 
0 

-}Jo(a)]+ V~<k'IV2olk>}. (12) 

<~~ (cx2±) t (cx2m, D) ~o (cx2±1))=- {-;,__ y~ <k'J v2+1l k); 

/~~ (cx2±2) f (cx2m• Q) ~o (cx2±2)/ 

, { e± i2<1> . (kR)2(Hi~) [ . ~a . = _E_z_ - --_ t (I + iYJ) or;-2 <Hz1J) xH2'11 J 0 (x) dx 
R 2Y6 k 

Making use of the relation (3), we note that the 
matrix elements that determine the scattering 
cross section from a nucleus with rotational levels 
differ from the matrix elements (12) only by a 
factor which is independent of the scattering angle, 
namely, 

(Y~0 (w)f(w, Q)Y00 (w)) 

= (~~ (cx2m)f (cx2m• Q) ~o (cx2m)); 

(Y;m (w)f (w, Q) Yoo (w)) 

=·~ ;g (~~(or;2m)f(cx2m•Q)~o(CX2m)). (13) 

It is seen from Eqs. (10) to (13) that in a region 
of sufficiently small angles (9), the form of the an
gular distribution of the nucleons of a given energy, 
which scatter with the excitation of a given collec
tive state of the black nucleus, does not depend on 
whether this state is rotation or vibrational. The 
forms of the angular distributions 

0 

cr2 (Q) = S cr2M (Q) and cr~l) (Q) = S cr~~ (Q), 
M m 

of the corresponding excited levels are also inde
pendent of the nature of the level. 

It is curious to note that the collective states of 
an even-even nucleus with odd projections of the 
moment are excited only because of the electrical 
interaction, i.e., they do not arise in neutron scat
tering. We also note that the equations in (4), 
which describe the scattering of neutrons on nuclei 
with vibrational levels, follow from Eqs. (11) and 
(12) for TJ = 0. 

The author thanks B. T. Geilikman for discus
sion of this research. 
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We take account of thermal motion of electrons and ions in considering the propagation of 
magneto hydrodynamic waves in an ionized gas. 

As has been shown by Astrom1•2 and Ginzburg,3 

magnetohydrodynamic waves in an ionized gas are 
nothing more than low-frequency ordinary and ex
traordinary electromagnetic waves, familiar from 
the theory of the propagation of radio waves in the 
ionosphere. The frequency of these waves is much 
less than the Larmor frequency of the ions. In the 
above-cited works the electron and ion motions 
were described by equations for their mean veloci
ties. The phase velocity V q, of a magnetohydro
dynamic wave is usually much less than the veloc
ity of light c, and may be compar:able with the 
mean thermal velocity v!f and vt of the elec
trons and ions. One can therefore expect that if 
V q, ~ v!f, the thermal velocity of the charged par
ticles will strongly influence the propagation of the 
magneto hydrodynamic waves. 

If the frequency w of the magnetohydrodynamic 
waves is much less than the frequency v c of 
"short-range" collisions, and if the wavelength A. 
is large compared with the mean free path, a local 
Maxwell distribution is established during a time 
on the order of 2rr/w. In this case, as is well 
known, the equations of hydrodynamics can be used, 
and it follows that in addition to magnetohydrody
namic waves of the Alfven type, two mixed magneto
sound waves may propagate in the plasma. If, on 
the other hand, . w » v0 , the thermal motion of 
the charged particles can be taken into account by 
finding the magnetohydrodynamic wave propaga
tion using the kinetic equation with self-consistent 
interaction. 4 

The present work is devoted to the kinetic the
ory of magnetohydrodynamic waves propagating in 
a plasma at any angle e with respect to an exter
nal magnetic field. "Short-range" collisions lead
ing to damping of the waves are not included. The 
case e = 0 has been treated by Gershman5 (see 
also Dungey6 ). It is found that if e = 0, the "short
range" collisions give only a small contribution 
even if it is not true that v0 « w. 3•5•6 In any case, 
the effect of "short-range" collisions will be small 
for arbitrary e if lie « w. 

1. DISPERSION EQUATION 

Consider electromagnetic waves propagating in 
a plasma of electrons and singly ionized ions. Let 
foa be the equilibrium value of the distribution 
function for particles of type a ( a = e denotes 
electrons, and a= i denotes ions). We shall 
write a kinetic equation for fa ( v, r, t), the small 
difference between the actual value of the distribu-
tion function and f0a, assuming that the frequency 
of the waves is so high that we may neglect the 
collision integral in this equation. We then have 

~+v~+--=.::_E ato~ -w' a[, =0 
at ar m~ av H oil ' (1) 

f o~ =no (m. I 2r::T ~>"' exp (- m~v2 I 2T ~). 

Here ea and rna are the charge and mass of the 
particles of type a (with ei = e > 0 ) , H0 is the 
external magnetic field strength, ,J is the polar 
angle in velocity space ( v is the velocity of par-


