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J = \ v-I. k v kl dk 
1 ) 1- k2 • (A.2) 

The integral along the real axis of k, by-pass
ing the singularities k = ± 1, is broken up in the 
following way: 

-1-cx 1-a co 

Jl = ~ + ~ + ~ + ~ + \ ' (A.3) 
-co -I+x I+o: r, r, 

where r 1 and r 2 are semicircles of radius a 
about the singular points. Making an error of or
der a in comparison with the leading term, we 
replace the exact values Vk k' by their asymptotic 
expressions (2.6) in the integrals along the straight 
lines, and extend the second integral to an interval 
from - 1 to 1. The integrals over the semicircles 
are estimated with the help of (A.1). They give a 
contribution of order a as compared to the lead
ing term. 

In an analogous manner one can justify the ap-

plication of formulae (2.9), (2.10) for the general 
term in the iteration series. 
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We consider non-stationary radiation cooling of a large volume of air heated to a high tem
perature (on the order of tens and hundreds of thoudands degrees) by a strong explosion. 
It is shown that, owing to the strong temperature dependence of light absorption in the air, 
the cooling involves the propagation of a sharp temperature jump, i.e., of a cooling wave. 
Cooling from the initial high temperature to that at which the air becomes almost transpar
ent and ceases to radiate occurs in a narrow wave front. A system of equations is derived, 
which permits an investigation of the internal structure of the cooling wave and leads to a 
connection between its parameters and the propagation velocity. A weak wave with a small 
temperature difference is considered. 

1. QUALITATIVE DESCRIPTION OF THE PROC
ESS OF COOLING HEATED AIR 

THE problem of a strong explosion in air was con
sidered by Sedov1 (see also Ref. 2). A strong shock 
wave heats the air irreversibly to a very high tern
perature, so that a large mass of very hot air is 
produced after the explosion, when the pressure 

returns to atmospheric. 
Imagine a large mass of air with linear dimen

sions on the order of several hundreds of meters, 
heated to a high temperature - above 100,000° at 
the center; the temperature towards the periphery 
drops to below 1,000°. How is such a mass cooled? 
Obviously, the molecular heat conduction does not 
play any role at all: with a heat-diffusion coefficient 
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(temperature conductivity) on the order of 1 cm2/ 

sec and with dimensions on the order of 104 em, it 
would take a year for the air to cool. The con vee-

· tive rise due to the difference between the densities 
of the hot and cold air and the mixing of the hot air 
with the surrounding masses of cold air, caused by 
the rise, are more substantial. However, the rise 
is small during the first 2 to 3 seconds. Obviously, 
the convective rise cannot exceed gt2/2, which 
amounts to 5 m after one second, 20 m after two 
seconds, and 45 m after three seconds. Therefore, 
if we consider the first few seconds, convection 
can also be disregarded. The fundamental factor 
is the radiation of light from the air, to which this 
article is devoted. 

A characteristic feature of this problem is that 
the transparency of the air depends strongly on the 
temperature. Cold air, as is'"known, is transparent 
to visible light, which indeed makes possible radi
ant cooling of a heated volume. 

The continuous spectrum of light absorption in 
heated air is principally due to photoionization of 
the excited atoms. The ionization energy of ani
trogen or oxygen atom in the ground state (I R~ 
14 ev) at temperatures on the order of 10,000° is 
considerably higher than the energies of the quanta, 
which play the principal role in a flux of energy hv 
on the order of several kT. These quanta can be 
absorbed only by atoms excited to energies I - hv, 
the equilibrium number of which is proportional to 
the Boltzmann factor exp {- (I+ Hv/kT)}. There
fore the free path of the light, which equals the re
ciprocal of the coefficient of absorption, depends 
very strongly on the temperature. The free path 
varies from kilometers at T R~ 6,000° to meters 
at T R~ 10,006° and centimeters at T R~ 13,000°. 

Obviously, the radiation that cools the air is 
determined essentially by the layer in which the 
radiation free path is on the order of the dimensions 
of the system, i.e., by a layer of temperature on 
the order of 10,000°, which can be called the trans
parency temperature T2• The colder air is trans
parent and does not radiate, the hotter air is opaque 
and radiates intensely, but its radiation is absorbed 
on the spot. These concepts, defining the effective 
radiating layer, are by no means new, and are 
universally used in the study of stars. However, 
unlike in the stars, the energy radiated by the air 
is not compensated for by an energy influx from 
an inner hotter region, since the temperature dis
tribution is determined in our case principally by 
the past history of the phenomenon and is not sta
tionary. It is therefore to be expected that if, as 
shown in Fig. 1, a certain smooth temperature dis
tribution exists at the initial instant of time, the 

r 

FIG. 1 

first to begin cooling by radiation would be the 
layer with a temperature on the order of T 2 ,.... 

10,000°; in the subsequent instants the temperature 
distribution will change under the influence of ra
diation as shown in Fig. 1. One layer of air after 
another will be cooled to the transparency temper
ature. Propagating over the gas hotter then T2 
will be a temperature jump, a cooling wave ( CW), 
in which the temperature drops sharply from an 
initial value T 1 to the transparency temperature 
T2. 

By representing the successive changes in tem
perature distribution as shown in Fig. 1, we disre
gard the changes in distribution due to purely hy
drodynamic motion. Actually, the jump is formed 
even before the air pressure drops to atmospheric, 
and the hydrodynamic scattering stops at approxi
mately that instant, when the radiant cooling of the 
layer of temperature ..... 10,000° becomes compara
ble with the adiabatic cooling of the expanding air. 
Later on, when the adiabatic cooling diminishes 
rapidly with falling pressure, radiant cooling be
gins to play the principal role. To the contrary, 
prior to the formation of the jump, the principal 
role is played by the adiabatic cooling and the 
radiation losses are small. 

T 

FIG. 2 

Thus, taking the adiabatic cooling into account, 
the successive changes in the temperature distri
bution are shown in Fig. 2, where the abscissa 
represents the Lagrangian rather than the Eulerian 
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coordinate. 
It can be said that the CW propagates through 

air that is undisturbed by the radiation. The air 
temperature prior to the arrival of the wave, Tt> 
is determined only by the past history of the proc
ess and by purely hydrodynamic motion, if present. 
The point is that at temperatures on the order of 
tens and hundreds of thousands of degrees, and at 
temperature gradients on the order of thousands of 
degrees per meter, which frequently occur in the 
initial distribution, the radiant heat conduction is 
too small, owing to the strong absorption, to pro
duce any noticeable energy flux in the region with 
initial temperature T 1• The radiant heat conduc
tion, the coefficient of which (coefficient of pro
portionality between the thermal flux and the tern
perature gradient) is proportional to the free path 
of the light l ( T) and to the cube of the tempera
ture, increases sharply with increasing tempera
ture and plays a substantial role only at hundreds 
of thousands of degrees, limiting the temperature 
rise to the same order and equalizing the tempera
ture near the center.* 

Thanks to the low heat conduction on the upper 
edge of the CW at the temperature T 1> the energy 
flux into the wave from within is nearly zero and 
cannot have a significant value. All the properties 
of the CW, particularly its rate of propagation 
through the hot gas, are determined essentially by 
one quantity, the temperature T 1> of the initial 
gas. (The properties of the gas and its pressure 
are assumed specified. ) The fundamental problem 
of the theory of the cooling wave is to find the en
ergy flux 82 radiated away from the surface of 
the wave. This flux lies obviously between the 
limits aTt > 82 >aT~ (a is the Stefan-Boltzmann 
constant). This problem is non -trivial, for the 
temperature changes very abruptly within the front 
of the CW. Once we find the flux 82, the velocity 
of the wave is readily derived from energy-balance 
considerations 

(1) 

where Cp is the specific of air at constant pres
sure, which we shall assume for simplicity to be 
constant, and p1 is the density of the air through 
which the wave travels. The basis for writing 
such a balance is the fact that the velocity of the 

*The coefficient of radiant heat conduction again becomes 
large at low temperatures (below rv 10,000°), owing to the 
sharp increase in the free path l, which passes through a 
minimum at T"' 50,000° [l (T)T3 has a minimum at T"' 10,000°]. 
However, at larger free paths, comparable with the dimensions 
of the system, the radiation transfer no longer has the nature of 
heat conduction. 

wave, according to estimates made, is subsonic, 
so that the pressure p is practically constant 
over the narrow front of the CW (as the air be
comes cooler, it becomes compressed, so that 
p "'pT ~ const). 

The lower temperature of the CW or the trans
parency temperature is not a strictly defined quan
tity. This is that temperature, below which the ab
sorption and radiation of light become very small. 
More accurately, it is the temperature at which 
the free path of the light becomes comparable with 
the characteristic dimension R, over which the 
temperature drops from T 2 to a sufficiently low 
value, say 1,000°, 

(2) 

When the wave propagates through expanding air, 
this dimension is determined by the hydrodynam
ics of the entire motion as a whole. The faster 
the adiabatic cooling, the smaller this dimension. 
Thanks to the exceedingly sharp exponential de
pendence of the free path on the temperature, the 
transparency temperature has a rather narrow 
range, in spite of the arbitrariness in its defini
tion, and depends logarithmically on the dimension 
R and on the air density P1· 

If the free path, suitably averaged over the spec
trum, is 

l =a (T) (Po/ r;) ei/kT , (3) 

where a is a slowly-varying function of T (we 
assume for air a= 2.8 x 10-12 x T2 em), Po is 
the normal air density (see below), than the trans
parency temperature, according to (2) is 

T _ l r1. Rp \-1 
2--1 n-1 • 

k \ apo ; 
(4) 

It will be shown below that the radiation from 
the surface of the CW is always generated at the 
lower edge of the step, regardless how high the 
step, i.e., at initial gas temperatures T1 as high 
as convenient. The flux 82 radiated by the CW 
is determined principally by the transparency tern
perature and equals approximately 2a'Ji. 

The speed of propagation of the CW, which is 
proportional to 

u~2crT~jp(I-T2/T1), (5) 

in the case of a sufficiently strong wave, when 
T 2 « T 1, thus depends principally only on the 
pressure.* The table gives several calculated 

*If it is taken into account that at high temperatures ioniza
tion causes the specific heat to increase with temperature, then 
the relations (1) and (5) become somewhat more complicated. 
In this case it becomes necessary to write the specific enthal
pies W (T,p) and W (T2p) in lieu of cP T, and CP T2 • 
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u, km/ sec at p = 1 atmos 
R,m 10 50 100 

TO' 2 10 700 9 700 9 300 

T,• 
20 000 2.7 2.1 l.7 
50 000 1.8 1.4 1.1. 

100 000 1.6 1.2 1.0 

values of the velocity u in kilometers per sec
ond in air at atmospheric pressure, at various 
values of T 1 and T 2 . The same table indicates 
also the values of R, from which the tempera
ture T2 was obtained with formula (4). 

It is shown in the theory of heat conduction that 
the time t required to cool a hot body is propor
tional to R~cpp/K, where K is the coefficient of 
heat conduction, and R 0 is the dimension of the 
body. The relation t ...., R~ is based on the as
sumption of a gradual similar reduction in tern
perature of the entire mass of the body. If a hot 
body is cooled by radiation, with a cooling wave 
traveling from the periphery toward the center, 
the cooling time is quite different, namely t "' 
R0 /u. Thus, a mass of air approximately 100m 
in radius, heated at atmospheric pressure totem
peratures on the order of tens and hundreds of 
thousands of degrees, cools down by radiation to 
about 10,000° within approximately 0.1 seconds. 
The radiation cooling that follows is considerably 
slower and is of an entirely different, three-dimen
sional character ( since the free path of the light 
becomes comparable with the dimensions of the 
body). The mechanism of absorption and radiation 
of light now becomes different. 

Owing to the great extent of the lower edge of 
the CW, and also owing to absorption and radia
tion of light by the air cooled by the CW, the front 
of the CW almost always remains invisible. All 
these questions, including that of the possibility of 
experimental observation of the CW, are beyond 
the scope of this investigation. 

We develop below an approximate theory of the 
CW, i.e., we examine in detail that narrow layer, 
in which the temperature drops sharply from T 1 

to T2• 

2. STATEMENT OF THE COOLING-WAVE 
PROBLEM 

Disregarding the specific dimensions and shape 
of the cooled air mass, we seek a solution for the 
non-stationary equations of radiant heat exchange 
in the form T ( x - ut), corresponding to a plane 
wave propagating at constant speed u in a gas of 
specified temperature T1 and density Pt· The 
speed u itself should be found from equations 

similar to those used to determine the speed of 
a flame in an explosive mixture. 

Actually, the equations do not have an exact 
solution of the form T ( x - ut). The point is that 
as the wave propagation leads to an increase in the 
thickness of the layer of cooled air in which the 
absorption of light, although small, is nevertheless 
different from zero, and the transparency temper
ature changes with time. In an unbounded medium, 
the layer of gas cooled to as low a temperature as 
desired owing to its infinite extent, turns out to be 
quite opaque. The flux then vanishes at infinity and 
no CW mode exists in the strict sense of the word.* 
This factor, of prime significance in the case of an 
unbounded medium, raises only an apparent diffi
culty under real conditions. In fact, the hot region 
is always bounded and the transparency tempera
ture changes but little with increasing distance 
covered by the wave, being contained within a 
rather narrow interval if the system is of practical 
dimensions. An additional, very slow time varia
tion of the solution, occurs only at the very lowest 
edge of the wave, which is quite elongated, in the 
almost-transparent region of the already cooled 
air. 

If the CW propagates in expanding air, adiabatic 
cooling soon lowers the temperature of the radia
tion-cooled layers enough to make them practically 
transparent. An additional slow time variation of 
T will exist only in the region of adiabatic cooling 
and will hardly affect the temperature profile in 
the CW itself. 

We shall not consider here the additional ab
sorption of light in the region of low temperatures, 
on the order of several thousands of degrees, due 
to the nitrogen oxide and the dioxide formed in the 
hot air. This absorption hardly affects the wave, 
although it may play a substantial role in the ab
sorption of the radiation flux from the surface of 
the wave in the peripheral layers of the air.t 

We shall neglect, in addition, the intense mo
lecular absorption in the low-temperature region, 
a substantial factor for ultraviolet radiation with 
1\ < 2,000 A, since at temperatures on the order 
of 10,000° and below this part of the spectrum con
tains only a small fraction of the energy (less than 

*To a certain extent, an analogous situation exists in the 
theory of the stationary propagation of a flame. If the speed of 
the chemical reaction in the uncombusted mixture is not assumed 
to be exactly zero, although actually it is a finite but vanish
ingly small quantity, the mixture will burn out before the flame 
front reaches it. 

tThe umque optical effects connected with the formation of 
oxides of nitrogen in a strong explosion have been considered 
in detail by one of the authors in Ref. 3. 
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4%), hardly affecting the energy balance of the 
CW. To formulate a cooling-wave theory it is nec
essary to examine, as is usually done in the theory 
of modes, a plane stationary process in the coor
dinate system in which the CW is at rest. In order 
to eliminate the difficulty indicated above and to 
make the problem stationary, i.e., to change from 
the true solution T ( x - ut, t) (with an additional 
slow time variation) to the idealized solution 
T ( x - ut), it is possible to employ one of two 
formally artificial measures. These, however are 
quite justified physically and, by virtue of what has 
been said, correspond to the real state of affairs. 

It is possible, first, to introduce into the energy 
equation an additional constant term A, which 
plays the role of adiabatic cooling. This term 
specifies the constant dimension R which deter
mines the transparency temperature T 2 and 
makes the absorption in the radiation-cooled re
gion finite. The energy-balance equation becomes 
in the stationary case 

dT dS 
up1cp dx +dx =-A, (6) 

where S is the radiation-energy flux at the point 
x. 

It is possible to disregard completely the weakly
absorbing region of the gas, cooled below the trans
parency temperature, by determining the transpar
ency temperature T2 at the very outset from for
mula (4), and by assuming that the medium is ab
solutely transparent at T < T 2 ( l = oo). 

To determine the radiation flux we employ the 
diffusion approximation of the rigorous kinetic 
equation. This approximation takes the angular 
distribution of the radiation into account in an ap
proximate manner. In the diffusion approximation 
we add to the rigorous equation for the radiation 
balance 

dS I dx = c (Ueq- U) I l (7) 

the approximate connection between the flux S and 
the radiation energy density* U 

S =- 1j 3 lcdU / dx. (8) 

Here 

(9) 

is the equilibrium radiation density, and c is the 
velocity of light. We disregard the spectral com
position of the radiation, characterizing the radi-

*One must not confuse the diffusion approximation with the 
approximation of radiant heat conduction, which is one partic
ular case in which the true density U in Eq. (8) is replaced 
by the equilibrium value Ueq• 

ation transfer in a suitable manner by means of 
a free path l averaged over the spectrum. 

It will be shown below that in a considerable 
portion of the CW the true radiation density U 
is quite close to the equilibrium density Ueq· In 
this case, as is known,4 the free path is averaged 
as done by Rosseland. In the region of the cooled 
air, U differs greatly from U eq and th~ free 
path should be averaged, quite differently. For 
simplicity we shall. use everywhere the Ross eland 
average, taking advantage of the fact that the 
Boltzmann exponential factor remains equal to l 
for any averaging method, and that all the impor
tant effects in the CW depend only logarithmically 
on the multiplier in front of the exponential, which 
naturally depends on the method of averaging. The 
Rosseland averaging of the Kramers formula for 
the photoelectric absorption of quanta by excited 
atoms4 yields, after substitution of known constants, 
the multiplier a { T) in front of the exponential of 
formula (3) for the free path. 

In Eqs. (7) and (8) it is convenient to change 
from the geometrical coordinate x to the optical 
thickness T, using the formula 

d7.=-dxll, -r:=-~dxll, (10) 

and reckoning T from the place where l = oo, in 
the direction of increasing absorption, i.e., of 
higher temperature: 

dS (d-r: = -c(Ueq- U); 

S = 1l 3cdUid-r. 

(11) 

(12) 

Dispensing with exact calculation of the angular 
distribution of the radiation, it is also possible to 
write approximate integral expressions for the 
flux and for the density by assuming that all the 
quanta move "forward" and "backward" parallel 
to the x axis 

S = -f [~Ueqe~-~'d-.:'- ~Ueqe<'-~d-r.']; (13) 
0 

co ~ 

U = ~ [~ Ueqe~-~'d-:' + ~U.,qe~'-<d-r.']. (14) 
0 

The coefficients in front of the square brackets 
are chosen such as to make formulas (13) and (14) 
give the correct values of the flux from the surface 
of an absolutely black body and the correct density 
inside the black body, away from the boundary. To 
take effective account of the angular distribution it 
is necessary to employ in these formulas not the 
true free path, but half its value. It is easy to 
check that in this case (13) and (14) satisfy Eqs. 
(11) and (12), which are of the diffusion type, with 
a coefficient of diffusion proportional to 7'4 instead 
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of to 1,13.* On the upper edge of the CW, as already 
mentioned above, the flux is nearly zero, and 
therefore one of the boundary conditions for Eqs. 
(11) and (12) is 

't: = oo, s = 0. (15) 

The second boundary condition should be specified 
on the boundary between the absorbing and abso
lutely transparent media, i.e., at T = 0. This is 
the well known diffusion condition, by which the 
diffusion flux on the boundary with the "vacuum" 
equals half the kinetic flux 

" = o, s =cUI 2. (16) 

Integral expressions (13) and (14) satisfy this con
dition automatically. 

3. WEAK COOLING WAVE 

Let us consider the limiting case of a weak CW, 
in which the upper temperature T 1 barely exceeds 
the lower one T 2• The free path, however will be 
assumed here quite strongly dependent on the tern
perature, so that the following conditions become 
compatible: the condition l ( T1 ) « l ( T2 ), which 
is necessary for the very existence of the CW, and 
the condition T1 ~ T2, Tf ~ '11, which is necessary 
if the wave is to be considered a weak one. 

The examination of the weak wave is of interest 
essentially as far as method goes. With this ex
ample, by simplification of the initial equations, 
we can obtain an exact analytical solution of the 
equations. Let us use the first of the artifices 
indicated in the preceding section and assume that 
constant adiabatic cooling A exists along with 
radiant heat -exchange, so that the energy equation 
is written in form (6). The integral of the energy 
equation (6) contains an integration constant C, 
determined by the choice of the origin for the co
ordinate x, i.e., arbitrary (the equation has a 
translation group ) : 

(17) 

On the lower and upper edges of the CW, where 
the flux S tends to S2 (the flux that goes to in
finity) and to zero, the quantity up1cp T tends 
asymptotically to two straight lines 

uplcpT = -Ax- s2 + C2, X-? oo; (18) 
UPtCpT=-Ax-j-C, x--oo, (19) 

"'Using half the value of the free path means that the aver
age cosine of the "forward" and "backward" quanta is assumed 
to be one-half. The differential equations equivalent to the 
integral expressions in (13) and (14) are known in astrophysics 
as the- Schwarzschild approximation. 4 

whose ordinates are apart by the amount of flux 
S2 that goes to infinity. 

The step in the CW is contained between these 
two lines: our problem consists of finding the posi
tion of this step. Let us now use the condition that 
the wave is weak. Since the phenomenon plays it
self out in a narrow temperature range, it is pos
sible to assume approximately in the equations for 
the radiation transfer that the factor Ueq• to 
which the radiating ability is proportional, is a 
constant. Obviously this factor, whose limits in 
the wave are 

4aT~Ic< Ueq < 4aT~jc, 
can be set equal to any of these limits, since the 
two limits are nearly equal. We shall assume 
specifically that U eq = 4a'li /c. Here obviously 
the flux going to infinity is 

(20) 

If U eq is constant, the equations for the radiation 
transfer become much simpler. We start with the 
integral expression (13) and obtain 

(21) 

Inserting (21) into (17) we get 

up1cpT =-Ax- S 2e-" +C. (22) 

When the temperature obtained from this for
mula is inserted into (10) we get a first-order dif
ferential equation for the function x ( T) and, re
turning to (22), we get T ( T, S2 ) and T (x, S2 ). 

To solve this equation we note that, in the narrow 
temperature range of interest to us, the actual 
Boltzmann dependence of the free path on the tern
perature, which is given by formula (3) (we neg
lect the weak temperature dependence of the mul
tiplier ahead of the exponent), can be approximated 
by an exponential one 

l = (ap0 I p) exp {k~ -(T- T0)~} 
o kT0 

= l (T 0 ) exp - 2 , { (T- To)/} 
kT0 

(23) 

where T 0 is a certain temperature about which 
the exponent is expanded. 

Such an approximation was made by Frank
Kamenetskii in the theory of thermal explosions. 5 

This formula automatically insures that the flux 
tends to zero at x - - oo, where the temperature 
tends to infinity [and its gradient, according to 
(22), is finite], which is essential for the existence 
of the mode. The temperature T0, about which 
the expansion is made and which can be specified 
arbitrarily, will be defined by the equation 
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(24) 

Let us change to dimensionless quantities, using 
the formulas 

8 = (T- T 0 ) !jT0kT 0 , (25) 

d~ = dxjl (T 0 ); (26) 

s _ ~_I _ _ _§_,_ _ _ I_ (T1 - T 2) 

- up 1cpTo kT0 - Al(T0)- kT0 T 0 • {27) 

Equations (22) and (10) assume the following FIG. 3 
form in dimensionless quantities 

8 =- 2- se-' + C, (28) 

(29) 

Their solutions, with the boundary conditions 
T=O, ~=oo (x=oo) 

' 
~=-In [ ~ ese-'d,;] + C, (30) 

0 

' 
H = In [ ~ ese-' d,;]- se-' (31) 

0 

yields the parametric relation for e ( ~) i.e., the 
temperature profile in a weak CW. Using the sub
stitution z = e -T, the integral in (30) or (31) is ex
pressed in terms of the tabulated Ei ( x) functions 
(Ref. 6) 

X 

Ei (x) = ~ eY ~-, (32) 
-00 

namely: 
I 

J = ~ ese-' d,; = Ei (s)- Ei (se-7 ). (33) 

On the lower edge of the CW, the temperature 
approaches the lower straight line asymptotically 
(at T « 1, sT « 1, e _.... - oo ), in accordance with 

~=-8-s+s(l-exp(-e&)+C. (34) 

On the higher-temperature side the profile ® ( ~ ) 
has the character of a step, whose slope increases 
all the time with increasing ®. Only when ® al
most reaches the upper straight line does the curve 
e ( ~ ) pass through the point of inflection and be
gins to approach the upper straight line asympto
tically, again in accordance with (34), but for 

-: ~ I, se-' <'(;: I, H __.. + oo, 

These laws are illustrated in Fig. 3, which 
shows the plot of ® ( ~) at s = 5. ~ is measured 
from the point at which ® = 0. It is natural to as
sume the front of the CW to be the point of inflec
tion of ® ( ~ ), a point at which the slope of the step 
has a maximum, and to assume the upper and lower 

temperatures of the CW to be the values of ® on 
the asymptotic lines at the coordinate of the point 
of inflection (see Fig. 3). 

The optical thickness Tf corresponding to the 
front of the CW can be found from the equation 
d2®/d~2 = 0. Differentiation of (30) and (31) gives 
a transcendental equation for T f as a function of 
the parameter s. 

Jc = Ei (~)- Ei (~) = e~/(1 - ~), ~ = sP-'c. (35) 

The temperature at the point of inflection, ®f, and 
also the upper and lower temperatures ®1 and ®2 

of the CW, are 

8r =-In(!-~), 

81 = 8r + ~. 
82 = 8f + ~-s. 

(36) 

(37) 

(38) 

The problem of finding the lower temperature T 2 

of the CW, and consequently the velocity u of the 
CW for specified upper temperature T 1 and for 
adiabatic cooling A, is readily solved by succes
sive approximations. We assume some value of 
the parameter s and use Eqs. (34) to (38) to cal
culate ®1 and ®2 • Then, changing to real temper
atures in accordance with (25), we determine T0 

and T2• Inserting these values into (27) we find the 
parameter s in the next approximation, etc. The 
successive approximations converge rapidly, since 
T 0 depends logarithmically on s. 

It is more convenient to proceed in the reverse 
manner: specify the values of the parameter s 
and any one of the two quantities characterizing 
the CW, either T1 or T2, and then determine the 
second quantity and the adiabatic cooling A nee
essary to insure the existence of a stationary 
mode. Thus, for the case s = 5 illustrated in 
Fig. 3, we obtain from Eqs. (35) to (38): {3 = 0.93, 
Tf=l.69, ®f=2.7, ®1 =3.7, and ®2 =-1.3. 
For example, at an upper temperature T1 = 12,250°, 
the lower temperature turns out to be T2 = 9200°, 
with T0 = 10,000° (I is assumed to be 14 ev for 
air). 
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The only really interesting values of the param
eter s are those much greater than unity. In fact, 
it follows from (23) that 

(39) 

and the ratio of the free paths must be greater 
than unity for the very existence of the CW, as 
already mentioned at the beginning of this section. 
(On the other hand, s is bounded from above by 
the condition that the wave must be weak.) In the 
case when s » 1, all the formulas become sub
stantially simplified and an approximate relation 
can be established in explicit form between the 
lower temperature of the CW and the value of the 
adiabatic cooling. In this case the temperature 
T 0 about which the range is expanded drops out 
entirely from the equation. 

Using the asymptotic expression Ei ( s) ~ es/s 
for s » 1, and noting that when s » 1 the root 
of (35) is f3 ~ 1, (Tf ~ ln s), we obtain from 
(31) and (35) 

8r ~In Ei (s)- 1 ~s-Ins- 1. (40) 

From this we obtain from (38) 

82=-lns. (41) 

Returning to the true temperature with the aid of 
(25) and taking (27) and (23) into account, we obtain 

the desired relation 

AI (T 2 ) =52 = aT~, (42) 

It must be noted that according to (37) ®1 > ®f > 0, 
and according to (41) ®2 < 0, i.e., the free path is 
expanded in accordance with (23) about the inter
mediate temperature in the CW: 

T2<To<Tr <Tl. 
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Scattering of fast nucleons by black nuclei possessing vibrational or rotational levels is con
sidered in the adiabatic approximation. It is shown that, in the diffraction region of scatter
ing angles, the shape of the angular distributions of nucleons of definite energy, scattered 
with excitation of a given collective level of an even-even nucleus, does not depend on whether 
the level is a rotational or vibrational one. 

WE consider the scattering of fast neutrons or 
protons from nuclei possessing vibrational or ro
tational excited states.1 We shall assume that the 
wavelength of the incident particle k-1 is much 
smaller than the nuclear dimension R ( kR « 1 ) , 

that the energy of the proton significantly exceeds 
the value of the Coulomb barrier ( Ze2 /RE « 1), 
and that the nucleus absorbs all particles incident 
upon it (black nucleus ) . These assumptions cor
respond to neutron energies E ~ 10 Mev and pro-


