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This work investigates the stability of the lattice is investigated with account of the interac­
tion of the electrons with the phonon field. A criterion for stability is established without 
the aid of perturbation theory. 

IN his well known work, Wentzel1 investigated the 
limits of applicability of perturbation theory to the 
interaction of electrons with the phonon field. By 
calculating the second-order correction to the pho­
non self-energy in perturbation theory, he found 
that the velocity of sound of the phonons is renor­
malized by writing 

s = s0 (I - p), p = (g2/2Tt2) k~ jo.' (kr), (1) 

where s 0 is the velocity of sound before renor­
malization, s is its renormalized value, kF is 
the wave vector at the Fermi boundary, E' ( kF) 
is the derivative of the electron self-energy with 
respect to the wave vector, and g is the coupling 
constant. Wentzel concludes that a necessary con­
dition for the applicability of perturbation theory 
is that 

p<;: 1. (2) 

As to what will occur if (2) is not satisfied, Wentzel 
asserts, on the basis of an analysis of the one-di­
mensional problem, that if in this case the coupling 
constant is sufficiently great, the phonon self-energy 
will become imaginary rather than negative. This, 
in turn, leads to breakdown of the lattice. We shall 
show below how an exact criterion for the stability 
of a crystal lattice can be established without the 
aid of perturbation theory. 

We start with the Hamiltonian describing the 
interaction of electrons with lattice vibrations in 
the form proposed by Frohlich. This is 

where 

H 0 = ~ o. (k) a;;';;ak" + ~ nw (q) b:-bq, (3) 
k,a q 

in which aka and aka are electron creation and 
annihilation operators, bk and bk are phonon 
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creation and annihilation operators, and V is the 
volume of the region of periodicity. 

In what follows we shall be interested in phonons 
whose energies are so low that 

where t.E is the mean energy difference in elec­
tron transitions. A rather good idea of the situa­
tion which arises can be obtained with the aid of 
the so-called adiabatic approximation in the form 
given by Bogoliubov and Tiablikov.2•3 In agreement 
with the basic concept of this approximation, we 
shall formally introduce in (3) a small parameter 
into the phonon frequency tiw and project our 
Hamiltonian with the necessary accuracy onto the 
subspace of states each of which is an electron 
Fermi vacuum.* We obtain 

(E -£0)@ = ~ (tiw (q) b"dbq- g21iw (q) A (q) 
q 

where <P is the wave function in the above-men­
tioned subspace, 

Eo= 2 ~ o.(k) 
lkl<kr 

is the energy of the Fermi vacuum, and 

A(q) = ~ ] 
lkl<kr 

lk+ql>kr 

1 
&: (k + q) - &: (k) • (5) 

Equation (4) is easily solved, since the Hamil­
tonian entering into it is a quadratic form in the 
Bose operators. We set up the secular equations 
(for more details see Bogoliubov and Tiablikov3 

and the monograph mentioned in the last footnote ) 

*A detailed description of the technique of projection can 
be found inN. N. Bogoliubov's monograph JieKuii 3 KBaHTosoi 

cTaTHCTHKH (Lectures on Quantum Statistics) (in Ukranian). 
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(t.w (q)- 2g2t.w (q) A (q)- E) Cq- 2g2t.w (q) A (q) C±q = 0, 

(nw (q)- 2g2nw (q) A (q) +E) C!q- 2g2t.w (q) A (q) Cq = 0, 
(6) 

where Cq and Cq are treated as c -numbers, 
and E is the energy of an elementary excitation 
(the energy difference between an excited state 
and the ground state). The condition that (6) be 
a soluble set of equations is that its determinant 
vanish. 

Solving (6), we obtain 

E (q) = liw (q) V1 - 4g2A (q) (7) 

(it follows from the general theory that the nega­
tive root of (6) may be ignored). Equation (7) 
shows immediately that if g2 is sufficiently large, 
E ( q) becomes imaginary so that the state under 
consideration becomes unstable due to the break­
down of the crystal lattice. Thus the criterion for 
stability is 

4g2A(q)<1. 

for all q. Noting that E: ( q) = ti2q2 /2m, we can 
calculate the integral in (5). Calculation gives 

(8) 

4g2A (q) = pf (x), (9) 

where 

4-x2 Jx+2l q f (x) = 1 + ----rx-ln x _ 2 l ; x = k;. (10) 

The function f ( x) takes on its maximum value 
f = 2 at x = 0. If this maximum value is used in 
the stability condition (8), we obtain finally 

(11) 

Since it is the phonons with low momenta, and 
therefore also with low energies, which are re­
sponsible for the breakdown of the crystal lattice, 
we have an a posteriori verification of the con­
sistency of the approximation being used. 

It is interesting to note that if, in the spirit of 
perturbation theory, we had expanded the root of 
(7) in powers of p, we would have obtained just 
Wentzel's Eq. (1). We note also that the stability 
criterion of (1) remains valid if we project the 
original Hamiltonian on a subspace of states close 
to the Fermi vacuum such as, in particular, the 
superconducting state. 

We have treated the case in which the Hamil­
tonian does not involve the Coulomb interaction 
of electrons. When the Coulomb interaction is 
included, the stability criterion (8) will differ be­
cause of the different variation of A ( q) for small 
q. One may suppose, however, that the lattice will 
remain unstable for sufficiently high coupling con­
stants. 

We have established the stability criterion in 
the adiabatic approximation. We will now show 
that the same expression is easily obtained by 
using the principle of compensation of "dangerous" 
diagrams.4 

Let us perform the canonical transformation 

bq + b""!:_q = ,; ~ i~) (Bq + B""!:_q); 

bq- b""!:_q = V ~ (~i (Bq- B""!:_q), (12) 

on the Bose operators bk, where Q ( q) is the 
renormalized phonon energy, which will be found 
below. Equation (3) then becomes 

H=Eo+Ho-!-H1 

Eo= {~(nil (q) -liw (q)); 
q 

H 0 = ~ s(k)ai;;,aka + ~t.!.l(q)B;jBq; 
k,a q 

X (B-qBq-!- Bt B""!:_q + B;j Bq + B_qB""!:_q)· 
(13) 

We shall treat the term H1 as a perturbation. It 

should be noted that the second term in H1 is in 
fact of order g2• 

Let us now determine Q from the requirement 
that in the second approximation in g all diagrams 
with two phonon lines at the output must compen­
sate.4 This leads to an equation for the heretofore 
unknown function Q ( q). As a result we obtain 

Q2 (q) = w2 (q) { 1- 4f ~ e (k- q)- e\k)-'- 'liD. (q) lJ' 
ikl<kp ' 

lk-ql>kp (14) 

and we may make the approximation 

Q (q) = w (q) { 1-
(15) 

4g2 ~ 1 }'!, 
V lkl<kp. lk-ql>kp e (k- q)- e (q) + 1tw (q) • 

It is clear that the lattice will be stable if the ex­
pression in curly brackets in (14) or (15) is posi­
tive. It is easily seen that this condition 

4gv' "' . 1 > I 
.L.l z (k- q)- o (q) + 1tw (q) 

ihl<kp. ik-<fl>hp 

becomes identical with (8) if the term hw ( q) is 
neglected in the denominator. 

It should be noted that obtaining Q from the re­
quirement that the "dangerous" diagrams compen-
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sate in the second order in g is equivalent to ob­
taining it by minimizing the ground state energy to 
the same approximation in g. One may suppose 
that this equivalence will be true also in higher 
orders in g. 

The authors take this opportunity to express 
their gratitude to N. N. Bogoliubov for discussing 
the work. 
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A general method for taking into account polarization of the medium in the calculation of 
radiative corrections in phenomenological quantum mechanics is developed. The effect of 
a nonconducting medium on radiative corrections to Compton scattering is taken into account 
for an arbitrary dependence of the dielectric constant of the medium on frequency. It is 
shown that in some cases, account of the medium substantially changes the cross section 
in the region of small scattering angles. 

1. INTRODUCTION 

THE iJ1fluence of the medium in the calculation of 
higher approximations in perturbation theory must, 
in general, be taken into account, because the in­
tegrations over the 4-momenta of virtual photons 
inClude a region of long-wave photons for which it 
is impossible to ignore the presence of neighbor­
ing atoms of the medium. This situation was first 
indicated by Landau and Pomeranchuk, 1 who noted 
that multiple scattering by the atoms of the medium 
should lead to a change in radiative corrections in 
those cases in which infrared catastrophes occur, 
i.e., where the region of soft quanta is essential. 
Ter-Mikaelian2 noted that the difference of the 
dielectric constant of the medium from unity for 
soft quanta should strongly influence the radiative 
corrections. 

A method of taking into account the multiple 
scattering by atoms of the medium was developed 
by Migdal.3 In the following, we consider the in­
fluence of the medium on radiative corrections, 
connected with the difference of the dielectric con­
stant and magnetic permeability of the medium, E 

and p., from unity in the region of soft quanta; we 
shall not take account of multiple scattering. 

In order to develop a general method for taking 
into account the polarization of the medium in 
higher orders of perturbation theory, it is con­
venient to use a generalization by the author4 of 
the Feynman-Dyson covariant perturbation theory 
to the case of phenomenological quantum electro­
dynamics in media. The general method obtained 
in this way will be applied to the Compton scatter­
ing, in order to obtain the cross section of sixth 
power in e, with account of the polarization of the 


