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will depend on the structures of the nuclei studied. 
One can hope information on the structures of vari­
ous nuclei can be obtained in this manner. 
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Results of the calculation of nucleon-nucleon interaction potentials are presented. The cal­
culations were made within the framework of the semi-phenomenological isobaric theory. 
The computed deuteron parameters and scattering of low-energy nucleons agree satisfac­
torily with experiment. An unsuccessful attempt is made to employ the computed potentials 
for a description of the scattering of high energy nucleons ("' 100 Mev). 

1. INTRODUCTION 

TAMM, Gol'fand, and Fainberg1 have proposed a 
semi-phenomenological theory of nucleon-meson 
interaction where, in addition to the ordinary nu­
cleon state with mechanical and isotopic spins 'l'2, 
there is consideration of their excited isobaric 
state with mechanical and isotopic spins %. This 
isobaric state, which is introduced purely phenom­
enologically, permits us to describe the behavior 
of the cross sections for the scattering1 and photo­
production2 of rr mesons on nucleons in a fairly 
large meson energy range up to 400 Mev. 

The semi-phenomenological theory of Ref. 1 in­
volves four free parameters: the nucleon excitation 
energy ~. the pseudovector meson-nucleon coup­
ling constant g/ 1J. (where /J- is the mass of the rr 
meson), the pseudoscalar coupling constant g' = 
sg (where s is a number ) and the constant g1 

which determines the probability of a nucleonic 
transition from its unexcited state to the isobaric 
state or vice versa. The values of these param­
eters were chosen to provide the best possible fit 
of experimental data on meson-nucleon scattering 
and meson photoproduction. The success of this 
procedure induced us to apply the semi-phenome­
nological isobaric theory to the problem of nuclear 
forces and specifically to the deuteron and nucleon­
nucleon scattering. 

Our calculation showed that inclusion of isobaric 
states greatly changes the results of the ordinary 
theory of nuclear forces, in which isobars are neg­
lected. For example, when isobars are included 
the potential energy of nucleons in 1S and 3S states 
increases proportionally to 1/r3 for r- 0, 
whereas when isobars are not taken into account 
the potential energy in the 1s state (unlike 3s) 
has, as we know, only the simple pole 1/r. 
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It follows that the isobaric theory leads to a 
nuclear force potential with a high-order singular­
ity, so that, just as in the ordinary theory, the po­
tential must be cut off at small distances. We shall 
assume that at small distances r s r 0 the poten­
tial represents an infinitely great repulsion; we 
thus are using the potential model with an impene­
trable solid nucleus. In addition to the four param­
eters already mentioned, the theory will thus in­
elude, as a fifth parameter, the cutoff radius r 0. 

The parameters 6., g, s, and g1 are determined 
from data on meson-nucleon scattering1 and photo­
production, 2 and are assumed to be fixed. The 
single variable parameter r 0 can be determined 
provided that we obtain, on the one hand, the cor­
rect deuteron binding energy (triplet state) and, 
on the other hand, the correct value for the deu­
teron singlet level. Generally speaking, these two 
conditions can result, and in the ordinary theory 
do result (see Ref. 3, for example) in a different 
cutoff radius r 0 for the triplet and singlet states. 
A fundamental feature of the isobaric theory is 
that the triplet and singlet cutoff radii are very 
precisely identical, so that the theory actually in­
cludes only one additional parameter r 0• The 
present article presents the results of the appli­
cation of this semi-phenomenological theory to 
the deuteron and to nucleon-nucleon scattering. 

The general wave equation of a system of two 
nucleons is given in Sec. 2. Our initial equations 
could be written in relativistic form but would 
make the problem too complicated. In the present 
work we have used the so-called adiabatic approxi­
mation, which is essentially as follows. In first 
approximation the nucleons are regarded as infi­
nitely heavy and fixed at the points r 1 and r 2 ; 

their static interaction potential V ( r ) is then 
determined, where r = r 1 - r 2, and this potential 
is inserted in the Schrodinger equation. This is 
the simplest approximation and is fully suitable 
for the nonrelativistic deuteron problem of interest. 

In Sees. 3 and 4 the nucleon )nteraction potentials 
are found in adiabatic approximation for states of 
two-nucleon systems with different isotopic and 
mechanical spins. Finally, Sec. 5 gives there­
sults of a computation of deuteron parameters and 
nucleon scattering at low energies. Whereas these 
results can be regarded as in satisfactory agree­
ment with experiment, the theory was unsuccess­
fully applied to a description of nucleon scattering 
at high energies. This is shown by the 100-Mev 
nucleon scattering phases which are given in Sec. 5. 

2. WAVE EQUATION OF A TWO-NUCLEON 
SYSTEM 

We take the interaction Lagrangian in the form1 

(n=c=1) 

(1) 

Here cp is the wave function of the meson field, 
If! is the nucleon field and BIL is a spin vector 
which describes the excited nucleon field (the iso­
baric field ) . * 

The six-row matrix S in isotopic space is de­
termined by the requirement of isotopic invariance 
of the Lagrangian and is analogous to the ordinary 
isotopic matrices T. (The explicit form of S is 
given in Ref. 1, Appendix A.4). 

We shall now write the equation of motion for 
the wave function v ( y1y 2 ) of two nucleons with 
positive energy. Here Yi denotes the set of quan­
tum numbers which characterize the state of the 
i-th nucleon (its momentum, total mechanical and 
isotopic spins and their projections on the z axis). 
In addition to the two-nucleon state we shall con­
sider only states in which an additional single me­
son is present. The Schrodinger equation is then4 

( summing over repeated subscripts ) 

(W _ E ) v ( ) _ <Y,'Y,o I y; y21) <Y; Y2i I y~ y~O> ( , ") 
y,y, Y2•Y2 - W-E, 1 V Y1 ,y2 

yl y2 

Here W is the energy of the system, Ey1y2 is 
the energy of two free nucle~ns, Ey y 1 is the 
energy of the state consisting of two1f:~ee nucleons 
and a single meson, the quantities < y1y20 I Y1Y21 > 
are the matrix elements of transitions from a 
mesonless state to a state with a meson; 
< Y1Y21I Y1Y20 > represents a transition with ab­
sorption of the meson. The matrix elements are 
easily obtained explicitly by means of the Lagrang­
ian (1). 

We now pass in Eq. 2 to the approximation 
whereby the nucleon mass M and the isobar mass 
M + 6. are regarded as very large ( M » IL ) , and 
we also assume W - 2M = 0 in the denominators 
of the right member of the equation. The latter 
approximation provides considerable simplification 

*Strictly speaking, the wave function of the isobar is a com­
bination of the spin vector B~ and the bispinor Do-· However, 
the interaction Lagrangian does not contain Do- and in the 
limiting case of infinitely heavy nucleons and isobars which 
is considered below Do- = 0. 
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and is fully justified for the nonrelativistic deuter­
on and nucleon-nucleon scattering at sufficiently 
low energies. 

We shall use the letter a to denote the state 
in which both nucleons are unexcited, {3 to de­
note the state in which the first nucleon* is unex­
cited while the second is in the isobaric state, y 
for the state in which the second nucleon is excited 
but not the first and o for the state in which both 
nucleons are excited. We also introduce the nota­
tion 

1 \ ikPI!J. 
<P n (p) = (Ztt)2 ~ dk (nD. +"h)"" (n = 0, I, 2); 

W-2M=V!J.; r=p/!J.; sn=Yk2 +!J.2 ; 

Gn = 2p 1 <P~, Hn = 2 (<P~- p- 1 <P~); 

Nn(k, I)=(kJ)Gn+(kp)(Jp)p-2 Hn; 

Nnm=Nn+Nm. (3) 

Using the explicit form of the matrix elements, 
we rewrite Eq. (2) in the coordinate representation: 

Voc = g2 (-.1-.2) No (oi> o2) oc + 1/2 ggl (-.IS2) No1 (ol, C2) ~ 

+ 1/2 gg (S1'"2) Nodes, a2)y + gi (S1Sz) NI(c1, c2) 8, 

(V-~)~= 1/2gg1 (-.1Sz)N0I(ai, c;)oc 

+ 1/2gi(SIS2)No2(clc;)'y, 

(V- ~)'y = 1/z ggl (S1't2) No1 (c~, a2) oc 

+ 1/z gi (S1S2) No2 (c~, c2) ~. 

(V- 2~) B = gi (S1S2) N1 (c:, c;) oc. 

The spin matrices o are 

1 ('0 
Cx = V2 I 

0 I/V3 0 ') ; 
I ;V3 0 I . 

cy = ~ (i o -i ;V3 ot. ). ; 
Vz 0 ifV3 0 -

(4) 

-2JV3 o 
0
o)· 

o 2fV3 
(5)t 

•Our approximation corresponds to the case of fixed parti­
cles so that we can speak of a "first" and a "second" nucleon. 

tThe following relations are easily verified: 

In Eq. (4) the following equalities were used:* 

u (k, s) iy5 (k- p) u (p, s') 

= 2Mu (k, s)y5 u (p, s') = (a, p- k)ss', 

u(k, s)(k-p)B(p, s')=(c, k-p)ss'• 

where u represents the usual Dirac amplitudes 
of a particle with spin %, B is the spin-vector 
amplitude of a particle with spin % (in our ap­
proximation ( M - oo), u are two -component 
spinors and B4 = 0), and a are the Pauli 
matrices. The subscripts 1 and 2 of the opera­
tors T, s, a and o denote the nucleon on whose 
variables the operations are performed. In order 
to go over from Eq. (4) to the ordinary non-isobaric 
theory of nuclear forces, it is sufficient to set g1 

= 0. For the potential energy of the two-nucleon 
interaction we then obtain the familiar expression 

(6) 

where S12 is the spin operator 

sl2 = 3 (crlp) (azp) p-2- (ala2)· (7) 

3. THE CASE I= 0 

The total isotopic spin I of a two-nucleon sys­
tem can be either 0 or 1. We shall consider the 
first of these cases. When I= 0 it is impossible 
to have one unexcited and one excited nucleon since 
two vectors with I = % and % cannot be added to 
give zero. Therefore in this case the wave func­
tions {3 and y are zero. 

It is easily seen that in isotopic space a and o 
are given by 

(8) 

with the isotopic space matrices 

( 0 I) , ( ~ ~ - ~ 
~o= -I O'Bo= 0 0 

-1 0 0 

(8') 

*The first of these equalities, which demonstrates the so­
called equivalence of the pseudovector and pseudoscalar in­
teractions, will cause g in Eq. ( 4) and subsequent equations 
to be replaced by g(l + s/2M) when M is regarded as finite 
(see footnotet on p. 842). The last equality can easily be ob­
tained by means of Ref. 5, where B~ is given explicitly. 
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where a and d are in general matrices with the 
ordinary spin variable. 

In the present case, (4) becomes 

Va =- 3g2 N0 (a1 , a2) a- 12gi Ndc1 , c2) d, 

(V- 21l) d =- 6gi N 1 (c:, c;) a. 

Eliminating d, we obtain 

Using (3) and (7), with the notation 

F; = 3G; +H1 , 

(9) 

(10) 

(11) 

we obtain the following expression for the operator 
vi=O of the potential energy of nucleons in the state 
I= 0: 

i6gf 2 2 
+ 9 (V-Z~) {6Fr + 12H1 

The first term on the right-hand side agrees ( for 
r 1r 2 = - 3) with the usual expression (6) for the 
potential energy of two nucleons, while the second 
term takes into account the influence of isobaric 
states on V. Multiplying (12) by ( V- 2A), we 
obtain a quadratic equation in the interaction op­
erator V. The solution of this equation for triplet 
states, with respect to the mechanical spin ( S = 1 ), 
of the two-nucleon system (including the stable 3s 
deuteron state) is given by 

(13) 

with the following notation: 

Rr = V(21l + p + 2q)2 + r + s, 

R2 = lf(21l + p- 4q) 2 + r- 2s , 

·"F • "H 64 ·4 (5F2 13H2) P = g- o. q = g- o, r = -9 gr r + 1 , 

When S = 0 the eigenvalue of S12 is zero and 
the eigenvalue of ( ap2 ) is -3. Substituting these 
values into (12), we obtain the following equation 
for the two-nucleon interaction potential: 

one of whose solutions is 

(14) 

As r - oo the solution for V with the positive 
radical approaches 2A, while the solution with 
the negative radical approaches zero. The last 
solution evidently represents the potential energy 
of two nucleons in the state I = 0, S = 0. 

4. THE CASE I= 1 

We now consider a system of two nucleons with 
total isotopic spin I = 1. By charge invariance the 
value of Iz, which is the projection of I on the z 
axis, is not significant, but for definiteness we 
shall assume Iz = 1. For Iz = 1 only the follow­
ing components of the wave functions are nonvan­
ishing: 

~.I 'I ' ~'/ 'I ' ~ -'/ 'I ' l•t -'I ' y,l 'I ' 0'1 -'I ' 0'1 'I ' 0 -'/,, 'I•' 2• 2 2• 2 2• 2 2• 2 ~· 2 2• 2 2> 2 

where the subscripts denote the projections of the 
isotopic spin of the i-th nucleon on the z axis. 

Using the fact that the wave function of the sys­
tem v ( Y1oY2 ) must satisfy the equation 

J2v=l(l+l)v, 
A 

where I is the operator of the total isotopic mo-
ment, we can represent a, {3, y, o by 

~=a~!· ~ = &~1· y = ;;.y1, o = aa1. (15) 

Here we have introduced the following matrices in 
isotopic space: 

(
o -V3) 

A I 0 
Yr = ; 

0 0 
0 0 

( 
o o - V3;2 o) 

0= 0 1 0 0. 
1 

- V3;2 o o o 
0 0 0 0 

(16) 

a, b, c, d are independent of the isotopic coordi­
nates but are matrices in ordinary spin space. 
Substituting (15) into the general system (4), we 
obtain 
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+ N 0I(C1, Oz)c} + lOgiNdc1, Cz)d, 

(V- 6.) b = gg1No1 (o1, c;) a- g;Noz (c1, c;) ~. 

(V- 6.) C = gg1N0I(c~, o2) ~- giNoz (c;, Cz) b, 

(V- 26.) d = 4 giN1 (c:. c;) ;,. (17) 

The last of these equations is used to eliminate a 
from the first equation of (17). We proceed as fol­
lows to eliminate b and ~. 

We consider singlet states with respect to the 
mechanical spin ( S = 0). Then the four compo­
nents of a (a= aA.fJ.• where A. and fJ. are spin 
indices) can be represented by 

, -I 0 ai a- -a 0 ' 

where a depends on spatial coordinates alone. 
We shall obtain the solutions of the second and 
third equations of (17) in the form 

(18) 

6 '= ~N 01 ( "1 c;) a, c = ~N 01 (c:, Oz) a, (19) 

where ~ is the sought factor. Substituting (19) 
into (17) for S = 0, we obtain a relation for ~: 

~ = gg1 [(V- 6.)- gi (Go2 + 2faHo2)P (20) 

Substituting (19) and (20) into (17) and eliminating 
a from the first equation of (1 7) by means of the 
fourth equation, we obtain an equation for a, from 
which there is derived the following cubic equation 
for determination of the potential energy vi=1, S=o 
in the system with I = 1, S = 0: 

80g~ (Fi +Hi) 
+ 9(V-2M . (21) 

It can be shown that for all distances between the 
nucleons this equation has one negative and two 
positive roots for V, which for p - oo approach 
0, A and 2b., respectively. The negative root of 
(21) must obviously be interpreted as the potential 
energy of nucleons in the state I= 1, S = 0. 

We shall finally consider a system of two nu­
cleons in the state with both total isotopic and or­
dinary spins equal to unity. Above, in (17), equa­
tions were given describing the behavior of a two­
nucleon system in state I = 1 with arbitrary 
mechanical spin. (17) is a set of four equations 
with respect to the functions a, b, c, a, with a 
easily eliminated by means of the last equation, 

whereas the elimination of b and c is more com­
plicated. 

We shall obtain the solution of (17) for the trip­
let state S = 1 in the form 

b = ~1 (oac·) + ~2 (op) a (c.p) p- 2 + ~3a {ap) (c·p) p-2 , 

(22) 

where ~i are coefficients, with the sign "' denot­
ing transposition. Substituting (22) into the second 
equation of (17), we obtain a relation for a linear 
combination of the matrices in (22). By equating 
coefficients of the different matrices we obtain 
the following set of equations for the determination 
of ~i: 

Obtaining ~i from (23) and substituting (22) into 
the first equation of (17), we obtain an equation for 
a, which describes a system of two unexcited nu­
cleons. 

The equations for a can be written as 

[V --£1 (V)] a= £ 2 (V) (op) a (op) p-2 ; (24) 

where 

4 

+ 8~ v ~2~ (5Gi + 4G1H1 + 2H~). 

4 

+ 8
9° v .:12~ (5Gi + 2G1 H1 + 2Hi), 

with ~1> ~ 2 , ~ 3 obtained from (23). The operator 
( a1p )( a2p) p - 2 in (24) has in the triplet state ( S = 
1) the three eigenvalues 1, 1, -1. We denote by 
V 1 the root of the equation 

V- [£1 (V) + E 2 (V)] = 0, (25) 

which corresponds to the eigenvalue 1 of the oper­
ator, and by V _1 the root of the equation 

V- [£1 (V)- E2 (V)] = 0, (26) 
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TABLE I. Values of the nuclear potentials 

P, 1i/f"C I uO.I, Mev I u~ 1 • Mev I yOO, Mev I yi,O, Mev I uLI, Mev I u!/. Mev 

0.46. -846.14 
I 

-219.35 -456.00 -1254.8 -1044.9 11.12 
0.5 -600.57 -184.07 -294.77 - 935.00 - 768.14 11.62 
0.6 -250.78 -131.16 - 89.87 - 462.36 - 365.29 12.74 TABLE II 0.7 -102.87 - 99.34 - 18.87 - 242.68 - 181.88 13.15 
0.8 - 41.72 - 73.53 5.357 - 128.5 - 89.24 12.64 
1.0 - 11.39 - 38.40 12.77 - 39.18 - 21.83 9,494 

r s• 11./!"C rt; lill"c I Q. (/i/!"c)' I p, % 1.2 - 5.217 - 21.20 10.46 - 14.02 - 5,556 6.154 
1.5 - 2.491 - 9.799 6.624 - 4.352 - 0.4264 3.134 
2.0 - 1.050 - 3.346 3.077 - 1.250 0.2214 1.078 

2.25 1 1.37 1 0.17 1 8 2.5 - 0.5022 - 1.339 1.499 - 0.5330 0.1517 0.4448 
3.0 - 0.2522 - 0.5884 0.7564 - 0.2583 0.0800 0.1968 (1.92) (1.22) (0.14) See Re£.6 

which corresponds to the eigenvalue - 1 of the 
same operator. (25) and (26) are fifth-degree 
equations in V, and the roots of these equations 
which approach 0 in the limit r - oo obviously 
represent to the potential energy of two unexcited 
nucleons. 

When the potential energy of two nucleons in 
the state I = 1, S = 1 is represented as 

(27) 

where S12 is the spin operator (7), then for the 
functions u1•1 and u~1 depending on the separa­
tion we have 

5. NUMERICAL RESULTS 

Numerical values for the potentials of interest 
were obtained from Eqs. (12), (14), (21), and (27) 
of the present article. The constants in the expres­
sions for the potentials were obtained by making 
the theoretical formulas of Refs. 1 and 2 agree as 
well as possible with experiments on meson photo­
production and scattering by nucleons. The opti­
mum values of the constants were* 

6. = 2.lf1.; g2 = 0.085; gi = 0.063; s = 1.8, (29) 

with the nucleonic mass taken as M = 6.75p,. 
Table I contains the values of the potentials, 

calculated from the set of constants in (29)t 
As already stated in the introduction, these 

*In comparing these numerical values of the constants with 
those given in Ref. 1, it must be remembered that in the present 
article we have used an isotopically invariant formalism, 
whereas the formalism employed in Ref. 1 is based on a classi­
fication by charge states. It is easily seen that as a result our 
values of g2 and g: must be one half as large as the corre­
sponding values in Ref. 1. 

tActually, in calculating the potentials from Eqs. (13), (14), 
(21) and (27) we did not use the constant g2 equal to 0.085 
but instead g2 (1 + s/2 M)2 = 0.11 (see footnote* on p. 839), 
but the results were very little affected. 

potentials possess a singularity of high order at 
the origin, thus leading to the difficulty associated 
with the absence of a stable deuteron state and 
zero separation of the nucleons. We have there­
fore replaced our potentials at distances r::::: r 0 

by an infinitely high repulsive barrier. The cutoff 
radius r 0 was determined separately for the sin­
glet and triplet states of the deuterons; the identi­
cal value r 0 = 0.46 n/p,c was obtained in both in­
stances. In this respect the isobaric theory differs 
from the ordinary theory of nuclear forces, 3 since, 
as we know, the singlet and triplet radii do not co­
incide in the latter. 

The potentials were used to calculate the par am­
eters which describe the deuteron and nucleon scat­
tering at low energies; these are the effective 
ranges of nuclear forces in the singlet ( r s ) and 
triplet ( rt) spin states, the quadrupole moment 
( Q) and the admixture of the D wave in the trip­
let state (p, %). These quantities and the corre­
sponding experimental values (in parentheses) 
are seen in Table II. Although the theoretical val­
ues generally somewhat exceed the experimental 
values, on the whole the agreement of theory and 
experiment at low energies can be regarded as 
satisfactory. 

As has already been indicated, our treatment 
is essentially nonrelativistic and applicable only 
to sufficiently low energies. To determine more 
completely the limits of applicability of the theory 
developed here it was of interest to use the de­
rived nuclear potentials in a description of nucleon­
nucleon scattering at energies as much higher as 
possible. For this purpose we calculated the phase 
shifts of nucleon-nucleon scattering at 100 Mev in 

the laboratory system. The results, which are 
given in Table III, show that our adiabatic approxi­
mation cannot be used to describe nucleon scatter­
ing at this energy. This would also be evident 
simply from the fact that the total cross sections 
app and apn were 75 and 124 mb, respectively, 
compared with the experimental values ...... 34 and 
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TABLE III. Phase shifts of nucleon-nucleon scattering 
at 100 Mev 

State 
I 

1S0 I lpl 1Dz 1Fs "Po spl I 3Dz •Fs 
I 

Phase I ~0 I 80 I ~2 1-o~!s181 8r~o I 8p_1 I 8p=2 I ~~=3 shifts 0.395 -0.2938 
0 

0.1034 0.969 -0.1238 0.609 -0.0368 

State 

Phase 
shifts and 
parameters 

of the 
mixture* 

•s1 + •D1 3Pz + 3Fz 3Ds + 3Ga 

*We have followed the notation used in Ref. 7. 

"'70 mb. The angular distributions were also en­
tirely unsatisfactory. A more exact non-adiabatic 
approximation might to some extent correct this 
discrepancy, but we are inclined to believe that the 
semi-phenomenological isobaric theory of nuclear 
forces which has been developed here is limited to 
low energies not above a few Mev. 
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I am extremely grateful to Academician Tamm 
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