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A relativistically invariant expression for the probability amplitude of two-photon annihila­
tion of positronium has been obtained by summing an infinite number of diagrams of a certain 
particular class. We have calculated the nonrelativistic limit of two-photon positronium an­
nihilation in the S- and P-states, as well as the selection rules for these processes. 

IN a previous work1 the author extended the meth­
ods of quantum field theory to the problem of anni­
hilation (or creation) of particles in bound states. 
In the present work, as a specific example of the 
results there obtained, we shall consider the anni­
hilation of positronium in the P-state, a problem 
which has not been treated by the usual quantum 
field theory.* In the present communication we 
shall not take account of radiative corrections, 
and shall calculate the probability amplitude for 
two-photon annihilation simply by summing dia­
grams. The same results can be obtained, on the 
other hand, by making use of the Green's function 
which describes two-photon positronium annihila­
tion.1 In fact it is advantageous to use this Green's 
function for calculating the radiative corrections, 
since the summation of an infinite number of dia­
grams becomes extremely complicated when vir­
tual particle annihilation is taken into account (see, 
for instance, the author's above-cited work). 

1. PROBABILITY AMPLITUDE FOR TWO-PHOTON 
POSITRONIUM ANNIHILATION 

In the lowest approximation the probability am­
plitude Af for two-photon annihilation of the free 
particles is written t 

Ac = e2<D;", (~~') C (23')y (e, 3'3) G (31 ') y (~', 1'1) 'P'r ( 12). 

(1) 

Here 'ltf ( 12) is the wave function of the electron 
and positron in the free state, G ( 31') is the 
Green's function of the electron, 3 and 

*K. Tumanov2 has calculated the probability of positronium 
annihilation in the P-state using quantum electrodynamics in 
configuration space, as suggested by Iu. Shirokov. 

tWe shall use a system of units in which n = c = 1, and the 
summation convention: 
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<Dkk' (W) = (27! ;'V kok~) [lvz:, exp i (-kE-k'~') 

+ z.,t~ exp i ( -kE'-k'O J 

is the symmetrized function of two photons with 
momenta k and k' and polarization l and l'. 
The numbers (see Ref. 4) denote the sets of all 
coordinates and spin indices of the particles, 
whereas the symbol ~ (or ~', ~", ... ) denotes 
the set of all coordinates and components of the 
polarization vector of the photon. A repeated sym­
bol denotes summation (for spin indices and po­
larization vector components) and integration 
( for the coordinates ) . Further, 

y (~. I 2) = (Y.)"'•"'•a (~-xi) ll (xi- x2 ), 

C (12) = C"'•"'•a (xi- x2), 

where y 1,2,3 = {3o:1,2,3 and Yo = {3, while C is a 
matrix which transforms an electron-positron 
field operator to its charge conjugate. We shall 
set C = o: 2• 

(2) 

Figure 1 shows the diagram* corresponding to 
Eq. (1). Since we wish to obtain the probability 
amplitude for two-photon annihilation of bound 
particles, we add to the reducible diagram of Fig. 
1 all "ladder-type" diagrams (Fig. 2). When this 
is done, the probability amplitude A for two­
photon annihilation is written 

A = e2<PZk' (W) C (67') y (~. 7'7) G (75') T W, 5'5) ['¥ c (56) 

+e2 G(51')G(62')y(f, 2'2)D(~~')y(~', 1'1)'P'c (12) 

+ e4 G (53') G (64') y (~ 4'4) D (~e) T (f, 3'3) G (31') G (42') . 
X y(;, 2'2) D (~€')T (~', 1'1) 'f"c (I 2) + ... ] , (3) 

where D ( H') is the photon Green's function. t 
This kind of an approximation for A means that 

*For simplicity, in Figs. 1, 2, and 3 we have omitted similar 
graphs in which the k and k' photons are interchanged. 

tThis function is defined as D(ee') = 3., 11•D(x-x'), where 
oD(x-x') =- 4rrio(x-x'). 
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some graphs of higher powers in e2 are included, 
while others are not. As is known, the physical 
meaning of this method may be explained as fol­
lows.5 In the bound state, particles interact for a 
very long (infinite) time. If ·e2 « 1, the proba­
bility of finding one virtual quantum in the field is 
small and the probability of finding two quanta 
simultaneously is even smaller. Although the 
probability for the exchange of one quantum during 
a small time interval is fairly small, during the 
infinite time of existence of the bound state an in­
definite number of quanta may be exchanged suc­
cessively. It is just such processes that the 
"ladder-type" graphs deal with. Omitted diagrams 
of higher powers of e2 refer to processes in which 
two or more quanta are in the field simultaneously. 
If e2 « 1, such graphs are not important in the 
bound state if we restrict ourselves to the first 
nonzero approximation. 

We note that Fig. 2 omits diagrams (Fig. 3) 
which refer to the electron -positron exchange in­
teraction involving one-photon virtual annihilation. 
This interaction is also of the type in which at 
every instant of time there is only a single virtual 
photon in the field. According to Furry's theorem,6 

the total contribution of such diagrams to the prob­
ability amplitude of Eq. (3) must vanish. In general, 
summation of the "ladder-type" diagrams of Fig. 2 
together with those of Fig. 3 will lead to a particle 
bound state whose wave function is a solution of the 
Bethe-Salpeter type, which includes, in addition to 
the usual interaction, the electron-positron ex­
change interaction which results from their single­
photon virtual annihilation. 1•4 

The infinite sum in square brackets in (3) is a 
solution to the Bethe-Salpeter equation obtained by 
successive approximation. To show this, let us 
write the Bethe-Salpeter equation in the integral 
form 

'1"(12) = '~"r (12) 

+ e2 G (13') G (24')1 (~, 3'1 ') D (~~')j W, 4'2') 'I" (1'2'), (4) 

where >IFf ( 12) satisfies the free-particle equa­
tion 

G-1 ( 11') G-1 (22') 'l"c (1'2') = 0 

and is the zeroth approximation to the exact wave 
function >IF ( 12). We obtain the first correction to 
the zeroth approximation by replacing >IF ( 1'2') in 
the right side of (4) by its zeroth approximation 
>IFf (1'2'). The second approximation is obtained by 
replacing >IF ( 1'2') on the right side of (4) by its 
first approximation, etc. Continuing this iteration 
process ad infinitum, we obtain a representation 
of the solution of (4) in the form of the infinite sum 
of Eq. (3), so that we can now write 

A = e2<D~~<' (~~') C (25~ y (~, 53') G (3'3)y (~', 31) 'I" (12), (5) 

where >IF ( 12) is the positronium wave function 
satisfying the Bethe-Salpeter equation.5 

Equation (5) can also be written in terms of 
Gep ( H', 21 ), the Green's function describing 
two-photon positronium annihilation. 1 Indeed, ac­
cording to the author's previously-cited work we 
have 

Gep(~~·. 21) =e2 (D(~f)D(~'f) 

+ D WI) D (~~')) c (2'5) 

X y(~, 53')G(3'3)y(e, 31')K(1'2', 12), (6) 

in the first nonvanishing approximation. Here 
K ( 1'2', 12 ), which is the Green's function of the 
interacting electron a.>J.d positron,4 and the photon 
and electron Green's functions D and G, are 
taken in the lowest approximation in e2• Equation 
(5) follows directly from (6). 

2. NONRELATIVISTIC APPROXIMATION FOR 
THE PROBABILITY AMPLITUDE 

Let us rewrite (5) in terms of the relative mo­
mentum p. Then in the positronium center-of­
mass coordinate system we have 
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X "f'l.,as (p) d4p3 (K -k- k'), (7) 

Here 1/J ( p) is the positronium wave function in 
relative momentum space, m is the electron 
mass, and K is the total positronium momentum. 
For any vector a we write a= avYv• and a= 
a1Y1 + a2Y2 + a3Y3· 

In calculating the amplitude as given by (7), we 
make use of the fact that the relative velocity v 
of the particles in the positronium atom is small 
( v ""' e2), so that we shall henceforth neglect all 
terms of order v2 and higher. For convenience, 
we shall rewrite (7) in terms of the two-by-two 
Pauli matrices a rather than the Dirac matrices 
y, and shall consider only those of the small com­
ponents of 1/J ( p) to be nonzero which are of order 
v. We then obtain 

A = _ i 2rte2 r \ (a2 (l'a) [(p- k) a] (Ia) 
m Lj p•-[(p-k)2+m2j 

+ a2 (Ia) [(p + k) a] (l'a) ) n,!' ( ) d4 
p~ _ [(p + k)2 + m2] '1' ,a, p p 

O:ziXl 

X ~~.a, (P) d4p J 3(K- k-k'), (8) 

where 1/JL ( p) is the large (two-row) component 
of 1/J ( p ), and 1/JS (p) is one of the two small (two­
row) components of 1/J ( p ) , which are of order v. 
The small components (of order v) give equal 
contributions to (8), which explains the factor 2 
in the second Jntegral of that equation. 

When integrating over the fourth component Po 
of the momentum in Eq. (8), it is convenient to ex­
pand the coefficient of ¢L or 1/J S in powers of pij. 
This corresponds to expanding the integral in pow­
ers of v4• For our purposes the zeroth order term 
of this series is sufficient, namely 

\ <Jhp; Po) dpo = - 1 \ ~L(p, Po) dp0 
j p~- [(p- k)•+m•J (p- k)2 + m2 j 

= (p _ ~/+ m• 21t~L(p, t = 0). (9) 

A similar expression can be obtained for ¢8 ( p ) . 
Thus after integrating over p0, the probability 
amplitude of Eq. (8) contains the functions 1/JL and 
1/JS evaluated at the same time t 1 = t 2 for both par­
ticles. In our approximation ¢L ( p) evaluated at 

t = 0 is just the nonrelativistic two-component 
positronium wave function in momentum space. 
We shall evaluate ¢S(p) at t = 0 in the follow­
ing way. 

Up to terms of order v inclusive, the wave 
function of a single electron (or positron) in an 
external potential field is of the form 

( X ) f (x), 
(pa) x j2m 

(10) 

where X is a two-component spinor depending 
only on the spin indices, and p = - i V' is a differ­
entia! operator acting on the nonrelativistic wave 
function f ( x) which depends on the coordinates 
and describes the motion of the particle in the 
external potential field (the expression in (10) can 
be replaced by a superposition of similar four­
component functions). Bearing in mind Eq. (10), 
it is easy to find as accurate a positronium wave 
function with t1 = ~. This wave function is 

((po): 
2m 

- <D (paT) 
2m 

0 
)·., (x). (11) 

Here .P is a two-row spin wave function of two 
particles, and p = - iV' is a differential operator 
which acts on the nonrelativistic positronium wave 
function 1/Jnr ( x). The numbers 1 and 2 in the spin 
indices .PO! 0! as well as in the relative coordi-

1 2 d •t nates x = x1 - x2 denote the electron an pos1 ron, 
respectively. The superscript T denotes the 
transposed matrix. 

If the positronium is in an eigenstate of the total 
angular momentum and perhaps of other physical 
quantities, it is described by a superposition of 
functions of the form .PI/Jnr· Then the four-row 
positronium wave function is a superposition of 
the four-row functions of Eq. (11), and can be 
written in general as 

(
, 'P (x) 

(~~ 'P (x) 

- <p (x) (paT) 
2m 

0 
} (12) 

where the nonrelativistic two-row positronium 
wave function cp ( x ) is an eigenfunction of the 
total angular momentum of the system ( as well 
as of other physical observables making up a 
complete set). In Eq. (12) the differential opera­
tor p multiplying uT acts on the function cp (X) 
on its left. 

It follows from (9) and (12) that the remaining 
integrals in Eq. (8) are of the form 

~ F (p) rp (p) d3p, (13) 
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where cp (p) is defined in (12), and F(p) de­
notes all the other functions of p which enter 
into the integral. If we now make use of the fact 
that the positronium wave function cp ( p) differs 
significantly from zero only in the small-momen­
tum region where p/m = v « 1, we may calculate 
(13) up to terms of order v inclusive. We then 
obtain 

= (2TC)s F (p = 0) cp (x = O)+ (27t)s oF (p = O) ocp (x = O). (14) 
t opn oxn 

3. ANNIHILATION OF POSITRONIUM IN THE 
S-ST ATE 

Using (8), (9), and (14) the probability amplitude 
for two-photon annihilation of positronium in the 
S-state is given by 

A= i (Z;~:• (cr2 [(la)(kcr)(l'a) 

- (l'a) (ka) (lcr)l)"•"•tp"•"• (x = 0) 8(K-k-k'). 

= '(Z~:e• k[lxi']Sp(cr2tp(0))8(K-k-k'). (15) 

Since CT2 is an antisymmetric matrix, this proba­
bility amplitude differs from zero only for states 
whose wave function is antisymmetric in the spin 
indices. This means that the probability for two­
photon positronium annihilation differs from zero 
only for states with total spin s = 0 ( paraposi­
tronium ), and vanishes if s = 1 ( orthopositro­
nium). 7 Finally, it follows from (15) that when 
positronium annihilates in the S -state giving off 
two photons, the polarizations of these photons are 
mutually perpendicular. 

According to (15), the probability W for two 
photon annihilation of positronium in the S -state is 

W = 4~. ~ ~ (k [I X 1'])2 dO,. I Sp ( cr2 tp (0)) 12 

1,1' 

(16) 

If the principal quantum number n takes on its 
minimum value n = 1, we have W = ( e2 ) 5 m/2 = 
0.8 x 1010 sec-1, which agrees with the well known 
results of Pomeranchuk. 7 We have introduced the 
factor % into the formula for the probability of 
two-photon annihilation in order to take account 
of the two identical states of the system in which 
the photon momenta are interchanged. 

4. ANNIHILATION OF POSITRONIUM IN THE 
P-ST ATE 

Equation (5) can be used to calculate the proba­
bility of two-photon annihilation of positronium in 
any excited state. If, in particular, the positroni­
um is in the P -state and its wave function is such 
that cp (p) = -cp ( -p), the first term in (14) van­
ishes and the probability amplitude for two-photon 
annihilation of positronium in the P -state is given 
by the second term of the sum, namely 

A= (2n:)6e2 (~ cr2 ((1'0') (ka) (Ia) + (Ia) (ka) (l'a)] + (II') a,an) 
m ~ ~+~ ~ ·-

X ocp"'"' (O} 8 (K- k- k') 
oxn 

(17) 

The matrix CT2am is symmetric, so that (17) fails 
to vanish only for states whose total spin s = 1 
( orthopositronium ). If, on the other hand, the total 
spin s = 0 ( parapositronium ), the probability for 
two-photon annihilation of positronium in the P -
state vanishes by Landau's theorem,8 which asserts 
that a two-photon system has no states whose total 
angular momentum is one. From the symmetry of 
(17) with respect to interchange of l and l' we 
may conclude that the polarizations of the photons 
are parallel in the two-photon annihilation of posi­
tronium in the P -state. 

Equation (17) can be used to find the probability 
of two-photon annihilation of orthopositronium in 
the P -states, namely 

W = 4~s ~ ~ \ [m2 ( lnl'm + lml~) + (II') knkm] Bnm /2 dD.11 
1,1' 

(18) 

where we have written 

aSp (cr~mtf' (0)) I axn = Bnm· 

In order to calculate B we must know the total 
angular momentum eigenfunctions CfJJ,M (x) of 
orthopositronium with J = 0, 1, and 2 and with 
the z -component of the total angular momentum 
M = 0, ± 1, ... , ± J. Solving the eigenvalue prob­
lem in the usual way, we obtain 
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(() = _1 ( IJI_l 
•o.o V3 -IJY2~J~o 

-I/Y21Jio) = ~(-Y(I + M) (2-M) 
ljll ' tfll.M 2 MIJIM 

tp = ~ (Y(I + M) (2 + M)j 3!¥M-l 
2,M 2 Y(2-M)(2+M)/31JiM 

Y(2-M)(2+M)/3IJIM ) 

v (I - M)(2- M) I 3 IJIM+l ' 
(19) 

where 1/Jm = Rn1 ( r ) Y 1m ( 8, cp ) is the Schroedinger 
wave function of positronium with principal quan­
tum number n, orbital quantum number l = 1, and 
magnetic quantum number m. The gradient of 
1/Jn ( x) at x = 0 is equal to the gradient of 

(Rm) _ 2 (n2 -1)'1• 
\-r- r-o rYlm (6, cp) = 3 a•n• ·rYlm (6, cp). (20) 

Here r, 8, and cp are spherical coordinates, 
a= 2/me2 is the Bohr radius, and the Y 1m ( 8, cp) 
are defined in terms of the associated Legendre 
polynomials Pfl ( cos 8 ) by9 

Yim(6,cp)=v1_81m(6)eim<P, (21) 
21t' 

where 

m , /3 (1-m)! m 
8Im(6)=(-l) V 2<1 +m)!P1 (cos6) for m>-O. (22) 

81,-1m1 (6) = (-I)m 81,1m1 (6) for m <O. (23) 

Finally, in agreement with Tumanov2 we obtain 
the following result for the probability W of two­
photon annihilation of orthopositronium in the P -
state. 

(a) For J = 0 and M = 0 we have 
n2 -1 

W = 8fi5 (e2)7 m, 

and in particular for n = 2, we obtain W = 1.0 x 
104 sec-1. 

(b) For J = 1 and M = 0 or ± 1, we have 

W=O, 

which follows also from the work of Landau. 8 

(c) For J = 2 and M = 0, or ± 1, or ± 2 we 
have 

n2 -1 
W = 30n• (e2f m, 

and in particular for n = 2, we obtain W = 0.26 x 
104 sec-1. 

As is seen from the above results, the lifetime 
of positronium with respect to annihilation in the 
P -state is long enough for its visual spectrum to 
be observed. 

The author is very grateful to V. M. Galitskii 
and A. D. Galanin for discussion of the results. 
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