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In practice, the most convenient detector would 
consist of a "sandwich" of several photographic 
and luminiscent layers in close contact with each 
other. Superposition of light marks in several 
layers increases the total density and excludes 
errors due to stray light spots. 

A similar detector can be used as indicator of 
electron-nuclear showers produced by high-energy 
particles in a dense medium. The method may be 
of value for measurements of the number and dis
tribution of shower particles, having a higher re
solving power -for large densities -than ioniza
tion methods of detection; it can be used in con
junction with nuclear emulsions (in analogy with 
the method proposed by Grigorov for ionization 
chambers3 ) for determination of shower position 
(more accurately than with chambers). We shall 
mention also the (limited) possibility of timing 
the events by the use of moving film. 

The author would like to thank N. L. Grigorov 
for valuable advice. 

1 Furst, Kallman, and Krammer, Phys. Rev. 89, 
416 (1953). 

2 Iu. N. Gorhovskii and S. S. Gilev, (editors) 
C~HCHTOMeTpH'IecKuif cnpaBO'IHHK (Handbook of 
Sensitometry) Moscow, GITTL, 1955. 

3 Grigorov, Podgurskaia, Shestoperov, and Sobi
niakov, Reports of the Session on Thick Emulsion 
Methods , vol. I, Joint Institute of Nuclear Research, 
March 1957. 
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IN the present paper we discuss the analogy noted 
by us between the dependence of the atomic mag
netic moments of ferromagnetic metals and alloys 
on the concentration ~f electrons ( total number of 
s- and d-electrons) in an atom and the same de-

pendence of some quantity (of the dimensions of 
length) which, in the case of pure metals, is equal 
to the difference between the distance of nearest 
neighbors of the first coordination sphere of the 
crystalline lattice r 1 and some constant of the 
metal R. In the case of alloys, this quantity is 
expressed by an analogous difference. 

Let us consider the transition elements with 
atomic numbers Z from 21 to 29 (see Fig. 1 ). 
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FIG. 1 

We find that for these elements, 

Ii =0.13[(Zj2)1-(13.75+l)Z+ 26(l-I)+ 235.525], 
(1) 

where l = 0 for Z ::: 26, l = 1 for Z ~ 26.* 
In Fig. 1, we have plotted the values of r 1 , R, 

r 1 - R, the electronic concentration C, and also 
the types of metallic lattices. It can be seen from 
the drawing that the metals separate into two 
groups: the first includes Co, Fe, etc, for which 
r 1 - R < 0; the second includes Ni and others, for 
which r 1 -R > 0. The value of r 1 -R, as a rule, 
depends linearly on C, in which case the points 
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for the metals with lattices of type A2 ( such as 
Fe) lie on the lower line, and those of the type A1 
(like Ni) and A3 (like Co), on the upper line. 

The points for binary disordered alloys lie on 
the lines 1-3 of Fig. 2. 

Let us consider the quantity r1- RAB• where 
r 1 is the distance between the closest atoms of the 
transition metals in the lattice of the alloy (it de
pends on its concentration), RAB = AARA + ABRB 
( AA and AB are the atomic concentrations of the 
components of the alloy A and B, respectively, 
RA and RB are computed from Eq. (1). 

It is shown in Fig. 2 that the alloys divide into 
two groups: the first is composed of those for 
which r 1- RAB < 0, the second, those for which 
r 1- RAB > 0. The alloys Ni- Fe, Fe- Co, Co
Cu, Fe-Cr, Ni-Cu, FeAl, CoAl, NiAl,t CuZn 
and others are similar to pure metals: r 1 - RAB 
and a - RAB ( a = parameter of the lattice ) depend 
linearly on the mean electronic concentration per 
atom of alloy C = 71.ACA + 71.BCB, where CA and 
CB are the concentrations of electrons of compo
nents A and B, respectively. The lines 1 and 3 
correspond to these alloys for lattices of the type 
A2 ( CsCl), and the line 2 for lattices of the type 
A1 ( NaCl) and A3. The alloys Co- Mn, Ni- Mn, 
Fe- V depart from being straight lines. 

It is known that atomic magnetic moments of 
ferromagnetic metals and alloys behave in similar 
fashion. In particular, the curves 1- 2 of Fig. 2 
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are analogous to the Slater-Pauling curve for these 
moments; the same alloys Co- Mn, Ni -Mn, Fe
V and others depart from these latter lines. 3 It 
then follows that these moments depend essentially 
on r 1- R in the case of pure metals and on r 1-
RAB in the case of alloys. To be more convincing, 
we shall show, in an example of pure ferromagnetic 
metals, that the difference r 1- R enters into the 
empirical relation assumed by us for the moments 
m under examination. With this aim, we shall con
sider the quantity~ 

s =I+ 0,642 [n1 (r1 - R) + n2 (r2- R)J, (2) 

where r 2 = distance of nearest neighbors of the 
second cqordination sphere of the lattice, n1 and 
n2 are the numbers of nearest neighbors of the 
first and second coordination spheres of the lattice, 
respectively, the upper sign applying to the first 
group of metals, the lower, to the second. It was 
shown in Fig. 1 that € > 0 only for pure ferromag
netic metals. For the latter we get 

mfMs=Nd+0.!5(z0 js-4)n., (3) 

where MB is the Bohr magneton, Nd =number of 
unpaired d electrons in the atom, ns = number of 
s electrons in the atom, 

so=-0,!3Nd(Nd-ns+~)j(Nd-!). (4) 

Here f3 = 0 for the first group of metals, f3 = 1 
for the second group. The relation (3) is similar 
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to the relation 

0.15(/0 / l-4)n5 

m I M s = N a + --:1-_-----,~:-;-I .-:;"I-"-
where I0 and I are the exchange integrals be
tween the s and d electrons for one lattice site 
and between its neighboring sites respectively, Is 
is the transfer integral of the s electron.4 Ac
cording to Eqs. (2) and (4), E (Eo)= 0.4, (- 0.26) 
for Ni, 0.73 (-0.195) for Co, and 0.18 (-0.347) 
for Fe. Substituting these values in (3) we find that 
the computed and experimental values of m are in 
excellent agreement. 

Quantities analogous to (2) also enter into the 
relation for alloys. For example, for the alloys 
Fe, Co, Ni (component A) with Cr and V (com
ponent B), 

mal Ms = ... =f[1+0.642 L;n;(r,-R8 )A 8 
i 

-0.642 ~n;(r;-RA8)AAAB), 
i 

(5) 

where i = 1, 2 for lattices A2 and A3, and 1 for lat
tice A1, while the upper sign applies for Fe - Cr 
and Fe- V, the lower, for Ni- Cr and Co -Cr. The 
computed points lie on straight lines which cross the 
ordinates (moments) -1, 1 and 1, -1MB, and 
abscissas (concentrations) 42 at % Cr, 22.78 
em% Cr, 13.5 at% Cr and 20 at% V, respec
tively, for Fe- Cr, Ni- Cr, Co- Cr and Fe- V. 
This is in agreement with experiment.5 For the ob
served concentrations, a= RAB for Fe -Cr and 
Fe- V; above, deviations from linearity are ob
served. The change of moment (at 100 at % B) 
is almost the same as in experiments with weak 
solid solutions. 

*It is shown fhat, with an accuracy to within 1%, R = R 8 

+ Rct, where R 9 and Rct are the "radii" of the s and d 
shells of isolated atoms, computed by Slater. 1 The quantity 
r1 - R = r,- (R9 + Rct) recalls the difference considered in the 
theory of ionic crystals between the equilibrium minimun in
terionic distance and the sum of the radii of the neighboring 
ions of the lattice which characterizes their collision. We note 
that the numerical values in Eq. (1) are also encounted in 
Ref. 2 on the ionic structure of spinel; thus, for example, the 
number 235/60 given the factor u which characterizes the 
departure of the structure of spinel from the ideal (for the latter 
case, u = 0.375); the number 13.75 is Madelung's constant, 
which corresponds to u = 0.385, etc. 

trn each of the last three alloys there is one transitional 
metal; therefore, R for the particular metal is used in place of 

RAa· 

+The quantity in square brackets in (1) is equal to R/0.13 
= 7. 7 R. The latter number, divided by 12 (the number of 
nearest neighbors in a metal with lattice type Al), is equal to 
0.642 R. The coefficient 0.642/ A obtained in such fashion 
enters in Eq. (2). 

1J. C. Slater, Phys. Rev. 36, 57 (1930). 

2 E. J. W. Verwey and E. L. Heilmann, J. Chern. 
Phys. 15, 174 (1947). 

3 R. Bozarth, Ferromagnetism (Van Nostrand 
N.Y., 1951). 

4s. V. Vonsovskii and K. B. Vlasov, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 25, 327 (1953). 

5c. G. Shull and M. K. Wilkinson, Phys. Rev. 
97, 304 (1955). 
Translated by R. T. Beyer 
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l. Since the problem was first studied by Wiederoe1 

a detailed investigation of the relativistic motion of 
an electron in a varying axially symmetric field has 
been made in only two cases: motion in a magnetic 
field which is uniform and parallel to the axis of 
symmetry2 and motion in a barrel-shaped magnetic 
field. 3•4 Below we study a new version of this prob
lem in which a magnetic field which falls off in the 
direction of the axis of symmetry (bottle-shaped 
field) is displaced along this axis with variable or 
fixed velocity. Just as in the earlier cases, the 
new version of this problem can be used as the 
theoretical basis for a new type of accelerator -
a linear induction accelerator or, as it might be 
called, a linear betatron. 

2. Following Refs. 2-4, the equations of mo
tion of the electron are determined from the La
grangian function 

L = ·- m0c2 VI- v2lc2 +(e I c) r~A 

and have the form 

_!1_ (m;) =!:... ,;, ~ = !__ ,;, [H· - ~] 
dt c • ar c ' z r ' 

d • e • aA e · 
di (mz) = c 'If? Tz =-c r'f?Hr. (1) 

mr~ =-+A=--~ ( ': + ~), :1 (mc2 ) =- 4- r? ~~ , 

where m = m 0 ( 1 - v2 I c2 ) -t/l, A is the Aq; com
ponent of the vector potential, b is a constant of 
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up the crystals as infinitely long unidimensional or 
two-dimensional atom complexes, bound together 
by "small" forces of one nature, whereas in the 
complex itself the atoms are bound by "big" forces 
of another nature. 

6. The difference between the typical molecular 
crystals (e.g., the CH4 or C6H6 crystals) and the 
heteropolar molecular crystals (such as the NaCl, 
HgCl2 or PbS crystals) lies: (1) in the degree of 
molecularity {3; (2) in the nature of the forces in 
the molecules; (3) in the nature of intermolecular 

forces. The quantity {3 is defined as the ratio of 
the intramolecular energy ua ~ D ( D is the en
ergy of dissociation of the diatomic molecule into 
ions) to the intermolecular energy ue per bond. 
For the substances for which {3 is given below, it 
is possible to take ue ~ 2S/l. Example: 
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461 Title 

{3 = 300 ( CH4 ), 200 ( HCl), 22 ( HgCl2 ), 10 ( NaCl) 
taking l = 12 in all four cases. 

Translated by I. Polidi 
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Reads 

!:l.y = 2.87 x 10-3 em 

!::J.J. ~ = 7.2 x 10-5 radians 

2-(d, 3n); and of the I~7 cross 
section, 3-(d, 2n); 4-(d, 3n) 

p, yp, h, 1/p 

For y = 5/3, /J. has • o o 

Should Read 

W = y2 a~4 sin 2q>/2p (a11 a 44 

- a}4 sin2 3q>) 

The coefficient k:! equals 
Oo 185 x 10-3 em -i 0 

!:l.y = 3.18 x 10-3 em 

!::J.J.~ = 5.9 x 10-5 radians 

2-(d, 3n) on I~ 7 and 3-(d, 3n); 
4-(d, 3n) on Bi~g9 
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