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We have evaluated the probability for the production of an electron-hole pair in a semiconduc
tor in a strong electrical field, taking into account the electron-phonon interaction. We have 
obtained the temperature dependence of this effect which is very appreciable at low tempera
tures. We have considered qualitatively other processes which may influence the probability 
of the diffusion of a valence electron into the conduction band, such as the absorption of sev
eral phonons and collisions with a slow (non-ionizing) conduction electron or with an impur
ity. It is pointed out that the first of these processes can play a decisive role in relatively 
weak fields. 

IN a previous paper 1 we noted that interactions 
leading to a change in the quasi momentum of an 
electron (in particular, the electron -phonon inter
action) can play a very essential role in the elec
tron-hole pair production process in a semicon
ductor when a strong electrical field is present. 
In the same paper we derived a set of equations 
(1.12) which determined the probability of the cor
responding processes (the 1 denotes here and 
henceforth the equations of Ref. 1; we use also 
everywhere, where it Is not stated specifically, 
the notation introduced in that paper). Since their 
probability is always small, the direct diffusion 
of a valence electron into the conduction band, 
considered in Ref. 1, and the transition involving 
a phonon are to a first approximation independent 
of one another and can be considered separately. 
The present paper is devoted to an evaluation of 
the probability of the latter process. 

The initial condition can now be written in the 
form 

(1) 

The integration of equations (1.12) gives then the 
following expression for the probability of diffusion 
for one period of oscillation (we assume again for 
the time being that the field E is directed along 
one of the principal axes of the simple cubic lattice) 
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In deriving Eq. (2) we took it into account that, by 
virtue of the presence of fast oscillating factors, 
the terms with different k' do not interfere with 
one another. The experimentally observed diffu
sion probability D0 (PJ.) can now be obtained by 
summation over [ Nk], which in the given case. 
leads simply to the substitution 
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Here k is Boltzmann's constant and T the abso
lute temperature. Hence 
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The presence of the fast oscillating factors 
Qt, c ( p, k, p 11 I eE ) in the expressions under the 
integral sign in Eq. (4) leads to a very fast de
crease of the diffusion probablity with increasing 
minimum value which the quantity Ec (p) -
EV ( p ± nk) attains for given p ..l. and k. The basic 
contribution to (4) is thus made by terms with val
ues of k near k0• which is the difference between 
the values of the quasi momentum corresponding 
to the minimum value of the energy in the conduc-
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tion band and the one corresponding to the maxi
mum value in the valence band, divided by n. As 
a rule, as we noted already in Ref. 1, ko¢0. This 
leads to some changes in the evaluation of the inte
grals in ( 4). Indeed, the width D. of the forbidden 
band is by definition less than Eo, the minimum 
value of the function Ec (p) - Ey(P), and the dif
ference Ec ( p) - Ey ( p - nk0 ) tends therefore to 
zero in the complex p 11 plane before any of the 
energies occurring in it reach a branching point 
[the latter coincide with the zeroes of the function 
Ec ( p) - Ey ( p )] . As a result, for the values 

the integrands in ( 4) have not poles, but saddle 
points. The quantity m~ which enters in (5) is 
the reduced effective mass of the electron and 
hole, corresponding to motion in the direction of 
the electrical field. 

Evaluating the integrals in (4) by the saddle
point method, and integrating the result obtained 
with respect to p J.• we arrive at the following 
expression for the number of electrons per unit 
volume, which get into the conduction band per 
unit time: 
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Here Pmin is the value of the quasi momentum 
corresponding to the lowest electron state in the 
conduction band, while mrc and mrv are the 
principal values of the effective mass tensors of 
the electrons and holes. Just as was done in Ref. 
1, one can easily show that Eq. (6) is valid for lat
tices of all symmetries and for an arbitrary direc
tion of the field. 

Equation (6) contains, generally speaking, an 
unknown matrix elements Mvc(Pmin• nk0 ). To 
get a very rough estimate, we can use the fact that 
the free-flight time T of an electron in the conduc
tion band is determined by the matrix elements 
Mcc ( Pmin• nk) which for k ~ k0 have the same 
order of magnitude as Mvc ( Pmin• tiko). 

1 no 21t 
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where S (E) is the area of the surface Ec ( p) = E, 
and the bar indicates averaging over that surface. 
Taking it into account that in a semiconductor the 
motion takes place at the bottom of the conduction 
band and that thus 

S [sc (p)] = 87tm;sc (p), I grad Sc (p) I~ (2Ec (p) / m;)'l•, 

and substituting Ec (p) "' kT we get 

I Mcc (Pmin· hk) 12 v~ 
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If the lowest state of the conduction band is degen
erate, which apparently is the case for all cases of 
practical interest, then the transitions with large 
changes in quasi momentum, will make a consider
able contribution to T-1, i.e., k"' k 0. We then 
have for the quantity in which we are interested 

I Mvc (Pmin• hko) 12 ~ i Mcc (Pmin• h.k) 12 

and (6) can be rewritten 
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In this equation we have introduced the De bye tem
perature Tn, since in estimating T we had as
sumed Nk "' 1. One can easily verify that relation 
(9) holds also in the case where the lowest state is 
non-degenerate. Indeed, the order of magnitude of 
the quantity of interest to us is given by 

i M Vc (Pmln· nko) 12 ~; Mcc (Pmln. !i.k) 12 'hko I v 2m;kT. 

However, if we substitute in Eq. (8) a tempera
ture on the order of the Debye temperature-, we 
must still introduce an additional factor 

Nk ~ kT ofhwk ~ kT nfcp 

~-- ~-- (10) 
~kTDjc~ 2m;kTD~t.k0 jl 2m;kTn, 

where c is the sound velocity, while the connection 
between I M v c ( Pmin, nk0 ) 12 and 1/T remains the 
same. 

The basic qualitative difference between (6) and 
(1.19) is the explicit temperature dependence which 
occurs in the last factor. At low temperatures 

T ~ T 0 = eh.Ej4k V 2m~1 f.~ (E/105 v/cm) lOoK 

the number n of pairs produced is practically in
dependent of the temperature. When the tempera
ture is increased, the current begins to increase 
exponentially, and does so right up to T "' Tn. 
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(We assume nwko ,... kTD.) For T > TD one 
should observe a weak linear dependence of n on 
the temperature. In the interval from T 0 to TD 
the current can change at constant electrical field 
by a factor exp ( TD /T 0 ) , i.e., by several orders 
of magnitude. Of the greatest practical interest is 
the dependence of the critical field on the tempera
ture. By critical field is customarily meant the 
value of the field for which the current reaches 
some well-defined value. In the region of greatest 
interest, T0 ::; T ::; TD, 

(11) 

Outside this region there is practically no de
pendence. We must note, however, that Eq. (6) 
contains, as is well-known, also an implicit tem
perature dependence which is connected with the 
change in character of the crystal parameters 
( ~. m ~, and so on) during heating. The relative 
change in these quantities for a 1 oK change in tern
perature can be of the same order as the coeffi
cient of linear expansion, i.e., ,... 10-5• For ger
manium and silicon a direct measurement gives2 

y = d~/dT r:::~ -4 x 10-4 ev/degree. The relative 
shift of the critical field is then expressed by the 
following formula 

(lla) 

A direct comparison of (11) and (11a) shows that 
for T ,... TD the temperature dependence of Ec 
produced by virtue of the thermal expansion is 
several times larger than the one following from 
(11). When the temperature is lowered the re
verse situation is produced, since jdEc/dTj in
creases sharply according to (11) while the coeffi
cient of linear expansion decreases.3 At tempera
tures T ~ 200°K the temperature dependence is 
determined on the whole by Eq. (11). For T ~ TD, 
on the other hand, the thermal expansion is prac
tically the only source of a temperature dependence 
in Eq. (6). 

In the case of a complicated lattice there are 
always some kinds of phonons with the same wave 
vector but different frequencies (acoustical and 
optical). In that case the temperature dependence 
of the transmission coefficient must clearly have 
the form of a "staircase" curve, which is a super
position of functions of the form (6). As a conse
quence, the region where this dependence is appre
ciable can be extended appreciably. Thus, for ger
manium TD = 360°K and the frequencies of the 
optical phonons correspond to a temperature4 

Tort=-~ AWoptfk = 500°K 

A direct comparison shows that the factor in 
front of the exponential in Eq. (9) differs from the 
corresponding factor in Eq. (1.20) by the quantity 

At the same time, a difference between Eo and ~. 
even by a factor two (Eo ,... 2 ev ), makes the expo
nential factor in Eq. (9) some 10 to 15 orders of 
magnitude larger than the one in Eq. (1.20), assum
ing that the quantities m 11 which enter in these two 
equations are approximately the same. [We recall 
that m~ in Eq. (9) is the effective mass of an elec
tron and a hole, while m 11 in Eq. (1.20) is some 
formal quantity which is determined by the expan
sion (1.18).] If, however, m~ » m 11 , direct diffu
sion makes a larger contribution to pair-production 
probability than a process involving the absorption 
of a phonon ko· This would merely mean that ap
parently the transitions involving the absorption of 
phonons having some other wave vector kmin play 
the basic role. Indeed, one can see from the gen
eral equations (4) and (5) that the probability of 
pair production involving a phonon k is determined 
essentially by the quantity 

F (E, k, PJ.) 

q(p J.· k) 

{ i \ I = Re e'li£ ) (sc (p)- sv (p- 1ik) -"liwk] dp 1/f. (12) 

The point q ( p J.• k) in the complex p 11 -plane is 
determined by the condition that the expression un
der the integral sign tends to zero. For some well
determined values k == kmin and p 1. == p .i min• 
which, generally speaking, depend on the direction 
of the field E, the function F ( E, k, P.i) reaches 
a minimum. The neighborhood of this point gives 
also the main contribution to the pair -production 
probability. Only in an exceptional case can it be 
shown that ~in = 0 and the decisive fact is then 
the direct diffusion of the valence electron into the 
conduction band. For given P.i == P.imin• the func
tion Ec(P)- Ey(p -nkmin) reaches some mini
mum value in the neighborhood of which it can be 
written in the form 

sc(PJ.mln• p,)-sv(PJ.min-lik..Lmin• Pu -1ik11 min) 
(13) 

(p II - p II min)" 
= 6. (P.i min• kmin) +2m (p . k . ) 

II l.. min' min 

From this it is already absolutely clear that we 
obtain for the number of electron-hole pairs pro
duced an expression which is completely analogous 
to Eq. (6), but instead of k0 we have kmin• and 
instead of ~ and m 11 we have ~ ( p .i min• kmin) 
and m 11 (P.imin• ~in>· Practically, this differ-
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ence becomes apparent in the more complicated 
angular dependence which can no longer be evalu
ated without giving explicitly the form of the func
tions E c ( p) and Ey ( p). Apart from that, as is 
apparent from what has been said above, an appre
ciable reduction of the critical field can take place 
if even one of the functions Ec ( p) and Ey ( p) has 
sections with anomalously large curvatures. 

Finally we consider still one factor which can 
show an appreciable influence on the form of the 
function n ( E, T) for relatively weak fields. As 
can be seen, for instance, from Eq. (6), the proba
bility for a process in which a phonon transfers to 
an electron not only the necessary momentum, but 
also an energy E, is essentially determined by the 
factor 

i.e., it increases steeply with increasing E. Colli
sions in which an electron receives an energy 
larger than liwko• even if they have a small proba
bility, can thus influence the number of pairs pro
duced. From the point of view of the framework 
used by us, such a process must be one in which 
several phonons are absorbed. It is well-known, 
however, 5 that the phonon concept itself cannot be 
used to describe transitions in which the lattice 
absorbs or emits an energy much larger than kTn. 
To ascertain even the qualitative aspects of this in
fluence, we make the apparently very natural as
sumption that the probability of receiving an energy 
E from the lattice has the form a ( E) exp ( - E/kT), 
where a (E) is a slowly-varying function compared 
with the exponent. The total number of pairs pro
duced will then be 

f { £ 4 V2m~1 1 
n=~b(s)exp -"liT- 3e'li£ (~-s)'l,fds. (14) 

Since the exponent contains a very large number, 
we can use the saddle-point method to evaluate the 
integral, whence we get 

• ( ) c1iE { ~ + 1 (e1iE) 2 \ 

n = o sm -v--===-exp -"liT 24m·ll (kT)" Jl, (15) 
2 m~1 kT 

where 

(16) 

Expression (15) is valid provided Em » 0. For 
strong fields, Eq. (6) remains correct. Thus, right 
up to fields determined by the condition 

eEdj kT ~ 112m*~d2 I 1i ~ 1, (17) 

"multiphonon" processes make the main contribu
tion to the probability of transmission of a valence 

electron into the conduction band, which leads to a 
completely new dependence of this probability both 
on the field and the temperature. 

As can be seen from the criterion (17), the re
gion of applicability of (15) reaches already at 
room temperature the experimentally observed 
range of fields ( several times 105 vI em ) . 

The considerations given here can also be fully 
applied to another mechanism, whereby a valance 
electron receives an energy E not from the lattice, 
but from another electron which is already in the 
conduction band. If the average energy of the con
duction electrons is less than the ionization poten
tial, only a very small number of them can produce 
impact ionization. However, the principal mass 
also takes part in the ejection of valence electrons, 
thanks to the process pointed out above, which is a 
combination of impact ionization and Zener diffu
sion. A qualitative equation, which can easily be 
obtained also for this mechanism, will be complete
ly analogous to Eq. (15), only instead of T it will 
contain an effective conduction-electron tempera
ture T eff which in strong fields is cons:lderably 
larger than the true temperature.6 Its region of 
applicability will, however, be limited by the con
dition kTeff « ~. i.e., to rather weak fields. 

Finally, similar discussions show that collisions 
with impurities, during which, in general, no en
ergy is transferred, can influence the probability 
for electron-hole pair production only at very low 
temperatures, T ~ T0• 

The most reliable method to distinguish these 
two mechanisms from one another experimentally 
is, clearly, the observation of the temperature de
pendence of the critical field. In the case of an 
electron -phonon interaction, dEc I dT < 0 accord
ing to Eq. (11), while for an electron-electron in
teraction we must clearly have dEc ldT > 0. Ex
periments performed on germanium 7 ,s give us 
reasons to assume that electron -electron collisions 
play the dominant part in not too narrow p - n -
junctions. There is an indication9 that the opposite 
situation holds for narrow silicon p- n -junctions . 

In conclusion, I should like to use the opportunity 
to express by gratitude to Professor V. L. Ginzburg 
for discussing the results of this paper. 
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A quantum theory of conductivity is developed for metals placed in a high frequency electro
magnetic field and a constant magnetic field. The dispersion law of the conduction electrons 
and the manner in which they are reflected from the surface are assumed to be arbitrary. It 
is shown that the amplitude of the quantum oscillations in the high frequency case is in gener
al considerably larger than in the static case. The quantum oscillations considered here have 
not yet been observed experimentally. 

1. INTRODUCTION 

As is well known, in developing an electronic 
theory of the conductivity of metals it is possible, 
to a high degree of accuracy, to limit oneself to a 
semi -classical investigation which does not take 
account of the quantization of the energy levels of 
the conduction electrons. This possibility is related 
to the fact that, for all real cases, the level splitting 
b.E is considerably smaller than the limiting Fermi 
energy Eo of the electrons. In order to have b.E ..... 
Eo it would be necessary to have a magnetic field 
H "' Eo/1-L "' 109 oersted, or a metallic sample of 
width d ..... ti/ .J2m*Eo "' 10-8 em ( m* is the effec
tive mass of an electron and 1-L = eti/m*c ). 

However a semi-classical investigation does not 
permit one to look into an important effect gener
ally absent in the classical case - purely quantum
mechanical oscillations of the conductivity. At the 
same time the study of these oscillations is of con
siderable interest, particularly because it gives a 
convenient method of reconstructing the form of 
the Fermi surface from experimental data. 1- 3 

The papers of I. M. Lifshitz and Kosevich2•3 ap
pear to be the only ones in which diamagnetic os-

cillations of the static conductivity of bulk metal 
in a constant magnetic field were arrived at in a 
consistent manner. The essential assumption in 
their papers was that the current density in the 
metal was isotropic, which permitted them tore
gard the statistical operator as not depending ex
plicitly on the coordinates. 

In the present work a theory is developed for 
the general case in which there is spatial aniso
tropy due to a non-stationary electric field. It is 
assumed that the anisotropy is substantial, that is, 
that its characteristic dimension - the skin depth 
6 - is small in comparison with the Larmor radius 
r and with the electron mean-free-path l (the 
so-called anomalous skin-effect), so that the re
lation between the current density j and the elec
tric field intensity E is an integral. At helium 
temperatures, where the quantum oscillations are 
observed, this is valid already for meter waves. 

The study of this case is of special interest be
cause the amplitude of the quantum oscillations of 
the resistivity tensor turns out, generally speaking, 
to be considerably greater (by a factor of Eo/ !-LH) 
than in the static case. 

At the same time, specific intrinsic difficulties 




