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IN this work we show, within the framework of the 
relaxation theory of Bloch, 1 that relaxation transi
tions can change substantially the character of the 
saturation when two resonant fields act simultane
ously on a system with a discrete spectrum. Ac
cording to Ref. 1, when saturation by the field 
changes the population of the resonant levels, a 
change takes place in the population of all the lev
els that are connected with the resonant ones 
through relaxation transitions (generalized Over
hauser effect). Let us consider the interaction of 
two fields of frequencies w1 and w2, I Wpq - wtl 
:5 r, I wmn - w2 I :S r, which have no common 
resonant level.* 

We start with an equation for the addition D ( t) 
to the equilibrium density matrix f}, which deter
mines the resonant portion of the average dipole 
momentofthesystem, d(t)=Sp(dD(t)). Let 
Wab be the frequency of a transition between 
levels a and b in the unperturbed system, and 
let the Hamiltonian of the perturbation be ti V ( t ) , 
where 

( summation with respect to the ± sign). Accord
ing to Ref. 1 

(alat + iwab) Dab+ rab (D)+ i[V (t), 

(1) 

The relaxation is described by a linear transfor
mation r (D) of a definite type. The coefficients 
of this transformation represent the reciprocals 
of the relaxation times for the various transitions, 
and their final combinations need merely be con
sidered by us as phenomenological parameters 

If Wmn "' Wpq the first term must be retained 
only for a = b, for, in any event, when a"' b 
it does not contain resonant terms: 

r ab = 2} (f~a + r~b) - 2f~b. 
~ 

We seek the solution in the form 

b (t) = k + p±e+tw,.t + (l±e+i.,.,t, 

retaining only the resonance matrix elements 

Raa=Ra, Pt,, P-;;p, Q;J;n' Q;;m· 

(3) 

From the equations for the diagonal terms of the 
system (1) we find, using the normalization con
dition .!:Ra = 0, 

Ra = Ta•Im v + TP.a Im(L, v = P- p+, (L = Q- Q+. (4) qp pq nm mn 

Here T a are the coefficients of a transformation 
that is the inverse of r' (D). t 

We introduce 

Tab= Ta- Tb, IX,;-;; = r~b + i~Wab' Yab = p~- p~. 

For the "line form" we obtain 

Q;,n 

<D;:;n 
ia:;;zn { y mn - y pq s pq (T:,.n/ T~q ) } 

where the saturation parameter is 

spq = rpq r;q 1 Fpq [2 1 ( [1Xpq [2 + rpq r;q 1 Fpq [2); 

a simple transformation of (5) produces a formula 
for P~q/F~q 

It was shown in Ref. 1 that T~n and T~q· 
1/rmn and 1/rpq• which have the meanings of 
effective longitudinal and transverse relaxation 
times for the corresponding transitions, are posi
tive. From the reciprocity theorem for the equiv
alent circuit for Ta, it follows that when tia/kT 
« 1, 

T'/nn=;T~q. [T:nn[IT~q<:l, [T~;IIT);;n< I. 

In this case, which usually holds for a nuclear 
spin system, the interaction of the fields, as can 
be seen from the denominator of formula (5), leads 
to a narrowing of the lines broadened by the satura
tion effect. 

The extent of the effect is determined by the 
combination of the "crossover" relaxation times 

x = (Ttq I T:,.n)I(T'::zn I T~q) 
and has no longer dependent on the distance be
tween the resonant levels, in contradistinction 
with the effective level population. In connection 
with this, if K is on the order of unity, the influ
ence of the low-frequency resonant field on the 
resonant field of higher frequency should become 
noticeable.t 

In conclusion, I thank V. L. German and I. M. 
Lifshitz for discussion of the results. 
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*In the presence of a common resonant level, the situation 
becomes considerably more complicated, owing to the resonant 
contribution of the transitions through the common level, which 
acts as an intermediate one with the difference frequency. 1,2 

In the usual electron-nuclear level scheme in the Overhauser 
effect, when the resonant fields for the electrons and nuclei 
have a common level, failure to take these transitions into ac
count causes the constant hyperfine structure to tend to zero 
in the final result, which, as is known, gives a finite effect. 1 

There is no common level if both resonant fields are due to 
electron transitions at different nuclear orientations. 

tThe prime indicates that one of the levels should be re
placed by the normalization condition. Formally, the system 
of equations for T a corresponds to a certain equivalent de 
circuit. 

+We disregard level shifts (for example, the influence of 
polarization on nuclei on the position of the electron reso
nance3), We notice also that in experiments in which the 
Overhauser effect is measured with two fields, 4 tJlere is no 
interaction between the fields, in view of the smallness of one 
of the resonant fields. 
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PLASMA waves in a degenerate electron gas 
were, apparently, first considered by Gol' dman. 1 

However, the electrons in metals can hardly be 
considered as a gas. It is thus of interest to study 
the plasma oscillations of a degenerate electron 
liquid. According to Landau's theory of a Fermi 
liquid2 the transport equation for the non-equilib
rium correction on to the distribution function of 
the quasi-particles (electrons) of a degenerate 
electron liquid has the form,3 

(1) 

Here n0 is the equilibrium distribution function, 
Eo the'electron energy in the equilibrium state, and 

.Se = ~ <I> (p,p') on (p' ,r) dp', 

where <P is typical for the theory of a Fermi 
liquid, reflecting the short-range correlation of 
the particles. Finally E is the electric field 
which is determined from the equation 

divE =47te ~ ondp. 

(2) 

(3) 

In Eq. (1) collisions are neglected since it is as
sumed that the frequency of the plasma oscilla
tions is much larger than the collision frequencies. 

Considering solutions of Eq. (1) of the form 
onkei(k·r)-iwt, and restricting ourselves to the 
case of long wavelengths, which allows us to ex
pand in powers of k, we obtain from Eqs. (1) to 
(3), assuming that the Fermi surface is spherical, 
the following dispersion relation for the depend
ence of the frequency w of the plasma waves on 
the wave vector at long waves 

w2 = w~ + VoVo(-} + A0 + fsA2 )k2, (4) 

where v 0 and Po are the velocity and momentum 
of an electron on the Fermi surface, and A0 and 
A2 coefficients in the expansion in Legendre poly
nomials 

( x is the angle between the vectors p and p' ) . 
Finally 

For a perfect Fermi gas of electrons, An= 0 
and (4) goes over into the corresponding formula 
of Gol' dman' s paper. The author gave in Ref. 4 
an estimate of the coefficient A1 for a number of 
real metals. It was then shown that it was not at 
all allowed to neglect this quantity compared to 
unity. 

It is useful to make an estimate for the coeffi
cients An for the case when the function <P is 
determined by the forward-scattering amplitude 
calculated in Born approximation for a screened 
Coulomb potential. In that case 

1 

4 e•2n+1\ {' 1 } An = 31t 'livo -2- J dx Pn(X) ,_ T ---,1'--x-+--;--.-'-,-l•"f;-
-1 

and correspondingly 


