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(2) When A = 0 (exact self-intersection, K1o = 
0), 'Y1 = -y3 = Y8• In this case the area of the en
tire curve is expressed by the formula 

s = 4r.a:;;-~ (ll + 1)2 ± ljg)· (5) 

Both levels, corresponding to a given value of n, 
are separated by a distance that is one quarter as 
small as that of the levels corresponding to neigh
boring n and equal y. The levels are thus equi
distant in pairs. 

(3) When A » 1 (wide neck, K10 large), 'Y1 = 
- y2 = %. Formula (1) for the total area now be
comes S = 47Ta02 ( n + % ± %) , which can also be 
written in the usual form 

(6) 

The levels are again equidistant, but at distances 
half as small than in the case of two individual re
gions [formula (4)]. The levels are no longer equi
distant when the curve is nearly self-intersecting 
and the conditions for the applicability of the quasi
classical approximation are no longer satisfied. 

Let us consider the de Haas -van Alphen effect 
for trajectories with self intersection. The first 
two (most significant) terms of the oscillating por
tion of the number of electron states (with energy 
from 0 to E ) will be of the form 

sin ( ; a:~Sm - -4'-) cos 2:t'(m 

1 · ( ·s ") 4 - - 1 _SlTI 0:.~ m- ----,:-- COS -'rc·ym; 
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BY angular distribution we shall unde'rstand the 
dependence of the disintegration probability on the 
angle tJ between the relative momentum of the 
identically charged 1T mesons k 12 = p1 - p2 and 
the momentum of the third meson p3• 

As is known, 1•2 neglecting the interaction of the 
1l' mesons in the final state, the matrix elements 
for both decays do not depend on tJ with an accu
racy up to terms "' k~2p§, since the angular mo-

Sm is the extremal value of the area, and Ym 
is the corresponding value of y. 

When y = 0 (two individual regions), the oscil
lation takes place with a frequency corresponding 
to the cross-section area of the individual region. 
Then, as y increases (merging of the regions and 
formation of one common region), the first term 
diminishes and the term with double the frequency 
starts assuming an ever increasing role. When 
y = % (merging regions), the first term vanishes, 
i.e., the frequency of oscillations already corre
sponds to the total area of the curve. 

The author takes this opportunity to thank I. M. 
Lifshitz for discussion of this work. 
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menta £., L (Refs. 1 and 2) can assume the values 
£. = L = 0, 2, 4, .. , and the contribution of the cor
responding states to the matrix elements are 
.... k12Pa· The latter is due to the fact that the par
ticles in states with £., L ~ 0, in order to leave the 
region of their creation, have to overcome the cen
trifugal barrier, whose penetration coefficient is 
proportional to kf2p£. 

However, in the presence of interaction the par
ticles can go into a state with £, L ~ 0 and give a 
contribution to the angular distribution without pas
sing the centrifugal barrier. This case arises 
when the particles, created in a state with £. = L = 
0, leave the region of their creation, whereupon 
one of the pairs of particles 1 and 3 or 2 and 3 
gets close and interacts. In such an interaction 
the angular momenta £. and L are not conserved, 
but the total angular momentum is conserved. This 
makes possible the transition from a state with 
£., L = 0 to a state £., L ~ 0 with the same total 
angular momentum. It can be shown3 that the am-
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plitude of such a transition is determined,by the 
amplitudes of the scattering of the pairs of parti
cles from each other and is proportional to -IE 
( E is the relative kinetic energy of three rr me
sons) for transitions into states with arbitrary, 
possible £ and L. For sufficiently small energy, 
the contribution of these processes to the angular 
distribution is thus more important than the direct 
passage through the centrifugal barrier. In this 
case the angular distribution is determined not by 
the specific character of the disintegration inter
action, but by the amplitudes for the scattering of 
one rr meson from another. 

In order to find the angular distribution in this 
case, it is sufficient to know the wave functions of 
the system of three rr mesons in the small region 
of radius r 0 where the particles are created. It 
is shown in Ref. 3 that 1/J ( 2rr+, rr-) can in this re
gion be written, for example, in the form 

4 (2:t+, ...,-) = {I - ik12 a2- ~ (k12 + k23) (a2 + 2a0) 

+ J ~; (5a~ + lla2 a0 + 2a~)} fH 

+ {- f (k1a + k2al (a2- ao) (1) 

+ J ~2 (!3a~ -lla2a0 - 2a~)} f<+> + 0 (x2 ) + 0 (x3); 

f(-)' f(+) are the wave functions of the systems 
( 2rr +, rr-) and ( 2rr0, rr +), respectively, at zero 
energy; a0, a2 are the amplitudes for the scatter
ing of a rr meson from a rr meson at zero energy 
in states with isotopic spin 0 and 2; J is a known 
function of k12/ K and J; K = .../mrrE/n . An analo
gous formula holds for 1/J ( 2rr0, rr-). With the help 
of these formulae, the matrix elements for both 
disintegrations can be expressed through the ma
trix elements at zero energy <f(=F) IWII/JK+> and 
the amplitudes a2 and a0• 

The result of raising the respective expressions 
to the second power depends essentially on whether 
or not "time-parity" is conserved in these disinte
grations. If "time-parity" is conserved then the 
<f(=F) IWII/JK+ > are real. In this case the angular 
distribution differs from a spherically symmetric 
one only by terms of order K 2, inasmuch as the 
terms of first order in 1 are purely imaginary. 
Using an approximation to the expression for J, 
limiting oneself to lowest powers in cos tJ, and 
integrating over the energy of the third particle, 
one obtains for the disintegration probabilities the 
expressions 

dWH (&) = w<-> {1 + cos2 fJ- (mE I h2 ) [0.07a~ + O.la2 a0 

- 0.07 a~+ p (0,25a~- 0,32a2 a0 + 0.07 a~) 

dUJ'<+> (!J-) = w+ {1 + cos2 & (mE /1i2) [O.la22 + 0.03a2 a0 

+ 0.03a~ + p-1 (0'.12a~- 0.17a2 a0 +0.05a~)]} d cos&; 

r = w- IW+. 

If "time-parity" is not conserved the 
<f(±) IWII/JK+ > are complex. In this case the 
angular and energy distribution changes already 
in terms of first order of K • In this case, taking 
i:nto account only terms of first order, we obtain 
for the absolute squares of the matrix elements 
the expressions 

1 <4(2~t+, 1t-) rw 14K+> 12 = w- {I- (2r 1 3) 

(k1s + k2s) (a2- a0 ) sin tp}, I <4(2r.0 , r.+) IW I 4K+) ~2 

= w+ {1- (4 f3p) kl2 (a2- ao) sin rp}; 

cp is th~ relative phase of <f(+) IWII/JK+ > and 
<f(-) IWII/JK+>. 

In all the preceding formulae, the rr mesons 
are taken to be nonrelativistic. In order to take 
into account the relativistic corrections it is suffi
cient to change in the final formulae, the angle tJ 

to the angle tJ' between the momentum p3 and 
the relative momentum of the identically-charged 
rr mesons in the system of their center of mass. 
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THE motion of charged particles (charge e, 
mass m, e/m = 77) in high-frequency electromag
netic fields E ( r) eiwt, H ( r) eiwt may be approxi
mately represented as small oscillations r 1 = 
- ( 7]/ w2 ) E ( r 0 ) eiwt relative to a comparatively 
slowly-varying mean position r 0 ( t). In the non-


