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tions of Eyges and Fernbach. The functions differ 
by less than 10% for Xr "' 1-5. The photon LDF 
calculated by us using the first three moments 
differs from the more accurate function by less 
than 10%. 
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FIG. 2 

The electron LDF 1 is also shown in Fig. 1 (dot
dash curve). It should be noted that, even for x~ = 
10-4 which corresponds to distances of 2 x to
radiation units for particles with energy :=:: 108 ev 
(i.e. distances < 0.5 em in air at sea-level), the 
values of the photon LDF are only three times 
larger than those of the electron LDF, in spite of 
the fact that for Xr - 0 the function XrN r ( Xr ) 
diverges as ln xr, while xrNp ( xr) remains 
finite. 
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IN Ref. 1 we derived an equation for the motion of 
an electron with arbitrary law of dispersion E ( k) 
in a magnetic field ( H = Hz) and obtained ( fol
lowing I. M. Lifshitz and Kosevich2 ) with the aid 
of the quasi -classical approximation the following 
equation 

S(E, ka)=2;rrJ.~-2 (n+ 1/2 ), rJ.~=hcjeH. 

for the energy levels of an electron moving in 
closed trajectories (the intersections of the sur
face E ( k) = const, and the plane k3 = const). 
In the present work we shall consider a case when 
the trajectory has a form of a closed self-inter
secting curve ("figure eight"). However, the con
sideration given below pertains also to the case 
when the "figure eight" has a narrow neck and 
when it breaks up into two closed regions. 

Near the point of self-intersection it is impos
sible to employ the quasi-classical approximation. 
For the region near such a point (where the trajec
tory can be represented by two hyperbolas, which 
degenerate into straight lines upon exact self-in 
tersection), it is necessary to write the exact solu
tion. A similar problem was solved in Ref. 3. It 
turns out that near the point of self-intersection 
the exact solution is expressed in terms of degen
erate hypergeometric functions, similar to the 
manner in which the solution near the point of the 
classical turn is expressed in terms of the Airy 
functions. The "joining" of the quasi-classical 
solution (away from the point of self-intersection) 
and the exact solution (in the vicinity of this point) 
gives a quantization condition in the form 

s = 41tr~.o2 (n + 1/2 + Y1. 2 ("-)); (1) 

here S is the total area of the curve, Y1,2 (A) 
are functions, to be determined below, of the quan
tity 

where Ko = K1oat> K10 is the value of Kt at the 
boundary (for exact self-intersection K10 = 0 ), 

(2) 

E = a/ a 0, R is the radius of curvature of the tra
jectory at the point of self-intersection (-./ Ko/R 
is the slope of the tangent at the point of self-in
tersection for K10 = 0, or the slope of the asymp
tote of the hyperbola in the case of inexact self-in
tersection). The quantities Yt and y2 are deter
mined in the following manner 

'(1 = - ~ - '!11 - ~-In ,_A_\ y. = - -1-- '!12- 2~ In I !:_ [ , 
R · 4 4e ' - 8 • 4 1 4e 

R1ehp, = ljr ( {- + i -~), R2e'"' = e-ir:l4jr ({- + i ~) (3) 

In order to gain an idea of the splitting of the energy 
levels upon gradual deformation of the "figure eight," 
it is enough to consider the following cases. 

(1) When A < 0 and IAI » 1, corresponding to 
two individual regions ( Kto is imaginary), Yt = 
y 2 = 0. Then the area of each region is determined 
by the usual equation S = 21ra02 ( n + % ) , and the 
total area is 

(4) 
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(2) When A = 0 (exact self-intersection, K1o = 
0), 'Y1 = -y3 = Y8• In this case the area of the en
tire curve is expressed by the formula 

s = 4r.a:;;-~ (ll + 1)2 ± ljg)· (5) 

Both levels, corresponding to a given value of n, 
are separated by a distance that is one quarter as 
small as that of the levels corresponding to neigh
boring n and equal y. The levels are thus equi
distant in pairs. 

(3) When A » 1 (wide neck, K10 large), 'Y1 = 
- y2 = %. Formula (1) for the total area now be
comes S = 47Ta02 ( n + % ± %) , which can also be 
written in the usual form 

(6) 

The levels are again equidistant, but at distances 
half as small than in the case of two individual re
gions [formula (4)]. The levels are no longer equi
distant when the curve is nearly self-intersecting 
and the conditions for the applicability of the quasi
classical approximation are no longer satisfied. 

Let us consider the de Haas -van Alphen effect 
for trajectories with self intersection. The first 
two (most significant) terms of the oscillating por
tion of the number of electron states (with energy 
from 0 to E ) will be of the form 

sin ( ; a:~Sm - -4'-) cos 2:t'(m 

1 · ( ·s ") 4 - - 1 _SlTI 0:.~ m- ----,:-- COS -'rc·ym; 
2l 2 \ v q 
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BY angular distribution we shall unde'rstand the 
dependence of the disintegration probability on the 
angle tJ between the relative momentum of the 
identically charged 1T mesons k 12 = p1 - p2 and 
the momentum of the third meson p3• 

As is known, 1•2 neglecting the interaction of the 
1l' mesons in the final state, the matrix elements 
for both decays do not depend on tJ with an accu
racy up to terms "' k~2p§, since the angular mo-

Sm is the extremal value of the area, and Ym 
is the corresponding value of y. 

When y = 0 (two individual regions), the oscil
lation takes place with a frequency corresponding 
to the cross-section area of the individual region. 
Then, as y increases (merging of the regions and 
formation of one common region), the first term 
diminishes and the term with double the frequency 
starts assuming an ever increasing role. When 
y = % (merging regions), the first term vanishes, 
i.e., the frequency of oscillations already corre
sponds to the total area of the curve. 

The author takes this opportunity to thank I. M. 
Lifshitz for discussion of this work. 
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menta £., L (Refs. 1 and 2) can assume the values 
£. = L = 0, 2, 4, .. , and the contribution of the cor
responding states to the matrix elements are 
.... k12Pa· The latter is due to the fact that the par
ticles in states with £., L ~ 0, in order to leave the 
region of their creation, have to overcome the cen
trifugal barrier, whose penetration coefficient is 
proportional to kf2p£. 

However, in the presence of interaction the par
ticles can go into a state with £, L ~ 0 and give a 
contribution to the angular distribution without pas
sing the centrifugal barrier. This case arises 
when the particles, created in a state with £. = L = 
0, leave the region of their creation, whereupon 
one of the pairs of particles 1 and 3 or 2 and 3 
gets close and interacts. In such an interaction 
the angular momenta £. and L are not conserved, 
but the total angular momentum is conserved. This 
makes possible the transition from a state with 
£., L = 0 to a state £., L ~ 0 with the same total 
angular momentum. It can be shown3 that the am-


