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The methods of irreversible thermodynamics are applied to derive the time variation of mag­
netization of ferromagnetics. The role of spin-lattice relaxation in the phanomenon of ferro­
magnetic resonance is discussed. The resultant equations are compared with those of Landau­
Lifshitz and Bloch. 

l. In the observation of ferromagnetic resonance, 
the ferromagnetic specimen is placed in a constant 
magnetic field H0 = Hz. This magnetizes the sam­
ple to saturation. A radiofrequency field h is then 
applied perpendicular to H0• The amplitude of the 
field h is usually taken to be small ( h « H0 ); 

therefore, the magnetization vector M differs only 
slightly in direction from H0• In experiments on 
the study of relaxation in perpendicular fields, a 
strong radiofrequency field of high amplitude was 
applied. This produced a significant deviation of 
M away from H0• 

For the determination of the frequency depend­
ence of the components of the magnetization Mx, 
My, Mz of the ferromagnetic, there are used the 
equations of Landau-Lifshitz 1, Bloch,2 or various 
modifications of these equations,3 which are fre­
quently put together without sufficient basis. 

In the present paper, it is shown that as a result 
of the application of irreversible thermodynamics, 
one can obtain (under very simple and general as­
sumptions) equations for the change in the magne-
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tization with time, with consideration both of spin­
spin and spin-lattice relaxations, and the role of 
the latter in the phenomenon of ferromagnetic 
resonance can also be judged. 

From the viewpoint of thermodynamics, we can 
divide the system of spin moments, which corre­
spond to the magnetic properties of the ferromag­
netics, into a separate subsystem with temperature 
T (the spin system). We shall consider the re­
maining degrees of freedom of the entire system 
[analogously to what was done in the thermodynamic 
theory of paramagnetic relaxation4] to be thermo­
statted, the temperature of which (To) we shall 
consider fixed in the current research. We can 
show that the latter assumption is related to the 
conclusions made below and it is easily based on 
them. 

If the subset is found in thermal equilibrium 
with the thermostat or is isolated completely from 
it, and the magnetization M has a non-equilibrium 
value, which does not correspond to the field H, 
then we shall call the process of the approximation 
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of M to the equilibrium value the internal or spin­
spin relaxation (correspondingly isothermal or 
adiabatic). 

Another form of relaxation will take place if the 
magnetization of the subsystem M has a constant 
equilibrium value M0 while its temperature T > 
T0• In this case the system will go over to the 
equilibrium state by a transfer of heat to the ther­
mostat. In what follows, we shall call this process 
the external or spin-lattice relaxation. Processes 
of internal and external relaxation usually take 
place simultaneously and are connected with one 
another. 

The thermodynamic theory of relaxational phe­
nomena, which takes into account both forms of re­
laxation, was developed in the works of Shaposhnikov 
and was applied to paramagnetics. 5- 7 

2. For a sufficiently rapid change in the field H, 
the subsystem of spin moments will be found in a 
non-equilibrium state. The temperature T of the 
subsystem and the magnetization M do not satisfy 
the equation of state, which in this case determines 
a certain value of the field H* 

W = H*(T, M), (1) 
which differs from H. The difference H* - H can 
be regarded as some additional magnetic field, in 
the presence of which the subsystem would be in an 
equilibrium state. By the definition of the field H*, 
we have, always, 

[MH*] = 0. (2) 

In order to take into account the internal relaxa­
tion, we write down the expression for the change 
in the entropy of the non-equilibrium state of the 
subsystem, which can be represented in the form 
(see Ref. 8) 

TdS = dU- HdM + (H- H")dM, 

where U is the internal energy of the subsystem. 
The first two terms in the right hand side of the 
latter equation determine the equilibrium part of 
the entropy change: 

T (dS)p = dU- HdM, (3) 

while the latter gives the non-equilibrium part. 
Therefore, for the measurement of the entropy in 
the subsystem, we find 

Td!:iS I dt = (H- W) dM/ dt. 

In the approximation of irreversible thermody­
namics,9 the components of the "current" Mk are 
linear functions of the components of the "force" 
( Hk - Hk), i.e., 

3 

,,_:1~< = ~ Ln, (ff;- H;), (4) 
i=l 

where Lik is the tensor of kinetic coefficients 
whose components are functions of the magnetiza­
tion for ferro magnetics. Symmetrizing Lfk and 
antisymmetrizing Lfk the parts of the tensor Lik 
satisfy the Onsager relations: 

uk (MJ = u~~. ( -M); U"(MJ =-Uh(-M). (5) 

For a magneto-isotropic ferromagnetic, placed 
in a field H0 =Hz, one should, generally speaking, 
assume the presence of an axial anisotropy; there­
fore 

(6) 

where A1 = A2 = AJ., A3 =All. 
The components of the antisymmetric part of 

the tensor Lfk form an axial vector L which, 
according to (5), is an odd function of the magneti­
zation. The latter requirement can be satisfied by 
assuming 

L=yM, (7) 

where the coefficient y can depend on the temper­
ature. 

Now Eq. (4) can be written in the form 

Mk = l.k{Hh- H; (T, M)} + y [MH]R. (8) 

Here the term in curly brackets defines the relax­
ation process in the spin system. If we neglect 
this term, then Eq. (8) coincides in form with the 
equation of motion of a system of noninteracting 
magnetic momenta in an external magnetic field. 
In this latter case, the factor y has the meaning 
of a magnetomechanical ratio y0• In the presence 
of interaction in the subsystem, y is generally 
different fro a y0• The dependence of y on tem­
perature, which is experimentally observed, does 
not contraru ct the thermodynamic calculation. 

If we do not take the transfer of heat from the 
spin system to the "lattice" into consideration, then 
Eq. (8) describes the change in magnetization with 
time, brought about by the gyroscopic properties 
of the magnetic momentum and the process of spin­
spin relaxation. In order to introduce time relax­
ation into Eq. (8), we expand the expression for 
H* ( T, M) in a series about the equilibrium state 
of the spin system. Limiting ourselves to the first 
powers of t'J = T - T0 and m = M - M0 in the ex­
pansion, we get 

T • 
"~< mt< + mk =X[ hh +-cry [MH]" + (iJM"jiJT)H%, (9) 

where h = H - H0• The isothermal susceptibility 
xif is found from the derivatives 
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taken at the equilibrium position. Here, Xf = x.{ = 
xi, Xf = X I, and the times of isothermal spin­
spin relaxation rJ are determined from 

(11) 

In the case of an isothermal process in the spin 
system, t'J = 0 and Eq. (9) describes the change in 
magnetization with time, without any additional con­
ditions. 

For adiabatic change of the state of the spin sys­
tem, we find for the time of adiabatic spin-spin re­
laxation T~: 

(12) 

where X~ is the adiabatic susceptibility. It is now 
easy to find that 

'tu'tr = xf lx[ = CM/CH. (13) 

where CH and CM are the specific heats of the 
spin system, for constant H and M, respectively. 

3. The quantity of heat dQ transferred to the 
spin system of the lattice in the time dt we set 
equal to 

dQ = rx&dt. 

Then, by Eq. (3), 

(14) 

where TM = CMI a is the time of external, spin­
lattice relaxation for constant magnetization. Con­
sidering the magnetization M in Eq. (14) as a 
function of H and T, we can put this equation in 
the form 

· ,(} T 0 raM\ · 
& + - = -c lar I h. 

T H H \ )H (15) 

Here TH = CHI a is the time of external, spin­
lattice relaxation for constant H. 

Eliminating t'J from Eqs. (9) and (14), after 
simple transformations, we get the equation for the 
change in the magnetization with time: 

-=[ 'tM mk + ('tH + 'tD mh + m" 

= 'tMX[ h~t + X[ h~t + 't[ 'tMY [MH]k + 'tk y [MH]R, (16) 

which takes into account the internal and the ex­
ternal relaxation. 

In order to clarify the role of the spin-lattice 
relaxation, we rewrite the last equation in the form 

It follows from (13) that if we set CH = CM, 
then T~ = T~ = Tk, and therefore Eq. (17) can be 
written as 

>rHdAjdt + A = 0. 

A = 'tkmk + mk- X~<hn - Y't~< [MH]n. (18) 

As is seen from (18), the -spin-lattice relaxation 
in this case appears only in transient processes, 
since the stationary solution of (18) 

(19) 

takes only the Bpin-spin relaxation into account. 
For ferromagnetics below the Curie point, 10 the 

ratio 
CH aM/( aM \ 
eM= 1 +Hoar H.x ar - cdip) 

differs from unity only in the third decimal place, 
since the ratio of H0 to the intensity of the field 
of exchange forces Hex is of the order 10-3, 

while the specific heat of the dipole interaction 
Cdip « Hex IBMicnl. Above the Curie point, the 
ratio 

CH/CM = I + CH~r-2j(CH!x y-2 + Cdip), 

where C is the Curie constant, which differs from 
unity only in the sixth decimal place. 

The closeness of the ratio of CHieM to unity 
is brought about, as follows from what was said 
above, from the presence in the ferromagnetics of 
a strong field of exchange forces. Therefore, the 
specific heat of the spin system is so large that the 
radiofrequency field at small amplitude does not 
succeed in raising its temperature in any appreci­
able amount. As a result, the spin-lattice relaxa­
tion effect is shown to be insignificant and practic­
ally escapes observation. 

On the other hand, in the case THWo » 1, where 
w0 is the resonance frequency, it is seen from (1 7) 
that, neglecting the group of terms in the second 
curly brackets, we obtain the equation 

T.Kmh + mk = XKhk + 'th [MH]k, 

which takes into account only the spin-spin relaxa­
tion. In similar fashion we obtain, in the other lim­
iting case when THWo « 1: 

"~mk + m~t = x~hh + -r[y [MHl~t· 

Therefore, for ferromagnetics, the spin-lattice re­
laxation can exist independently of the magnitude of 
the ratio CHieM only upon satisfaction of the con­
dition THWo ~ 1, which usually does not hold. 

4. Neglecting the spin-lattice relaxation, we 
shall start out in what follows from Eq. (8) which, 
taking (2) into account, can be written in the form 
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Mn=An(Hn-~ Mk)+y[MH]R. (20) 

Since H* and M are connected by the equation of 
state, then, in the approximation assumed, 

(21) 

where Xo is the static susceptibility and M0 is 
the equilibrium magnetization corresponding to the 
field H0• Introducing the longitudinal and trans­
verse relaxation times 

T 1_ = Xo/Aj_; T 11 = Xo/Aii' 

we rewrite (20), keeping (21) in mind: 

Jl.ix.y=i[MH]x. y- (Mx,y- xoHx,y)/T J_, 

Mz =y [MH]z- (Mz- xoHz)/T u. 

(22) 

(23) 

The equations obtained above differ from the Bloch 
equations (which are applicable in the theory of nu­
clear magnetic resonances) by the presence of the 
terms XoHx and XoHy. In ferromagnetic sub­
stances, the vector M in weak radiofrequency 
fields and even for resonance is close in its direc­
tion to M0, as a consequence of the large width of 
the absorption lines. Therefore, the components 
Mx and My are small, and it is not possible to 
neglect the terms XoHx and xoHy. The equations, 
in a form that coincides with (23), were set up in 
Ref. 11 for the description of the phenomenon of 
ferromagnetic resonance. 

5. At temperatures far removed from the Curie 
point ( T < e), the external field Hi does not ap­
preciably change the magnitude of the vector of 
spontaneous magnetization M = Ms, producing 
only a change in its direction. If we require con­
stancy of the magnitude of the vector M, then it 
follows from (8) that 

(24) 

whence, by (2), 

H* = ~(MH)M/M2 , (25) 

where 

In this case, we can write Eq. (8) in the form 

Mx,y = y [MHJx,y- Aj_M-2 [M [MHJJx,y 

+ A j_ (I - ~) (MH) M-2 Mx, y; 

Mz = Y [MH]z- ABM-2 [M [MHJ]2 (27) 

+),!I (I -E) (MH) M-2 Mz. 

For Aj_ = A 11 =A, Eqs. (28) transform to the Lan­
dau-Lifshitz equations, as is seen from Eq. (26). 
The Landau-Lifshitz equations are widely used in 
the theory of ferromagnetic resonance. On the 
other hand, in weak radiofrequency fields, where 
h « H0, 

MzHz/MH = I; M!/ M2 = I 

the coefficient ~ RJ 1, and the equations (27) are 
simplified: 

Mx, y =-A j_M-2 [M [MHJJx, y -f.. y [MH]x, Y• 

Mz =-),1M-2 [M [MHJJz + y [MH]z. (28) 

The right side of the equation for Mz is equal to 
zero in this case; the solutions of Eq. (28) do not 
contain the constant A, and coincide with the solu­
tions of the Landau-Lifshitz equation in the case of 
weak fields for A 1. = A. 

If we assume that AJ. ~ A 11 , then the difference 
of (23) from the Landau-Lifshitz equation can exist 
only in the case of strong radiofrequency fields, 
where ~ ~ 1. 

Since the solution of the Landau-Lifshitz equa­
tion and Eq. (23) coincide in the case of weak rf 
fields, and they also coincide with Eq. (27), then 
the phenomenon of ferromagnetic resonance in 
weak fields is shown to be very insensitive to the 
detailed form of the equation employed for their 
description. Preference for this or that form of 
the equation can be made only upon observation of 
nonlinear effects, for example, observation of the 
change of the z component of the magnetization. 
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