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A method is proposed, based on the mathematical apparatus of quantum field theory, for the 
calculation of the properties of a system of Fermi particles with attractive interaction. 

IT was shown in the work of Cooper1 that if the {ia I at+ d 12m} if~ (x)- g (if~+ (x) if~ (x)) if~ (x) = o, 
interaction of electrons in a metal leads to an {ia I at- d I 2m} if~+ (x) + gifl+ (x) (if~+ (x) if~ (x)) = 0. (3) 
effective mutual attraction for two electrons close 
to the Fermi surface, then the pair of particles 
which possess mutually opposite momenta and spins 
can have bound states with negative coupling ener
gies. In the works of Bardeen, Cooper and Schreif
fer2•3 and of Bogoliubov4 a systematic theory of 
superconductivity has been erected on this princi
ple. It was shown that the ground state of a system 
of interacting Fermi particles is located below the 
normal state with a filled Fermi sphere and, in con
sequence, is separated from the excited states by 
a gap in order of magnitude equal to the energy of 
coupling of the individual pair. 

In the present work, a method is proposed, 
based on the physical idea of Cooper, which per
mits us, with the help of the apparatus of quantum 
field theory, to obtain all the results by a short 
and simple method. 

We shall start out from a Hamiltonian in the 
form2 which is written in the case of second quanti-
zation: 

if = ~ {- ( ~+ 2~ if~)+ f (if~+ (if~+ if~) if~)} dax, (1) 

where 

if~, (x) = v-'/,~ aka Sao eikx; ~t (x') = v-'/, sat, s;ae-ikx' 
ka ka 

satisfy the usual commutation relations: 

{~, (x), iflt (x')} = 0~~ a (x- x'), 

{if~, (x), if~~ (x')} = {iflt(x), iflt (x')} = 0. 
(2) 

We shall consider the interaction to be equal to 
zero everywhere except in a region of energy of the 
particles 2K around the Fermi surface, from 
EF- K to EF + K. 

We transform to the Heisenberg representation, 
in which the operators 1/J and zp+ depend on the 
time and satisfy the following equations: 
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We determine the Green's function G a{3 ( x - x' ) 
as an average over the ground state of the system: 

Ga~ (x- x') = - i (T (!flex (x), ifll (x'));, (4) 

where T is time-ordering operator. 
For the derivation of the equation for the func

tion G (x -x') we take it into consideration that 
the ground state of the system differs from the 
usual state with a filled Fermi sphere by the pres
ence of bound pairs of electrons. In the ground 
state, all the pairs are at rest as a whole. (This 
means that the interaction between particles is 
considered only insofar a·s it enters into the for
mation of the bound pairs. We neglect scattering 
effects.) A sort of "Bose condensation" of pairs 
takes place in the case in which the momentum of 
their motion as a whole is equal to zero, just as 
in a Bose gas such a condensation takes place by 
virtue of the statistics for the particles themselves. 
This circumstance permits us to write down in a 
definite way the mean form < T ( 1/J ( x 1 ) 1/J ( x2 ) x 
1/J + ( x3 ) 1/J + ( x4 ) )> , which appears in the equations 
for G(x-x') by virtue of (3). 

For example, we have 

(T (~ex (xi) if~~ (x2) if~J (xa) !flt (x4))) = 

- (T (~" (xl) !f~J (xa))) <T ((ji~ (x2) !fit (x4))) 

+ (T (~" (xl)) ~t (x4))i (T (if~~ (xz) !f~J (xa))) 

+(NIT (~a (xl) if~~ (x2)) IN 

+ 2) (N + 21 T (iflJ (x3 ) ~t(x4)) IN>· 

(5) 

where IN> and IN+ 2> are the ground states of 
the system with numbers of particles N and N + 
2. The quantity 

(N 1 T (~·-jl) 1 N + 2i ! N + 21 T (·~.- ·~+) l N i· (5a) 
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evidently has the order of the density of the number 
of pairs, while < T ( 1/JI/J + )> is the particle number 
density. 

It is easy to show that the quantities thus intro
duced can be written in the form 

(N J T (~"' (x) ~~ (x')) 1 N + 2) = e-2ifl.t F "'~ (x- x'), 

(N + 21 T (~T (x) tJ~t(x')) IN)= e2ifl.t Fj-13 (x- x'). (6) 

The function G ( x - x' ) depends only on the differ
ence x - x', because of the homogeneity of the 
problem. So far as the additional dependence on 
t in Eq. (6) i:s concerned, its origin is seen from 
the general quantum mechanical formula for the 
time derivative of an arbitrary operator A (t): 

iJ ' ' ai <N lA (t) 1 N + 2> = i (EN- EN+2) <N 1 A (t) 1 N + 2). 

The value of the energy difference EN+2 - EN is 
obviously equal to 2f.J. ( a E/ aN = fJ. ) • 

Making use of Eq. (3), we obtain equations for 
the functions G (x -x') and F (x -x' ): 

{ia 1 at+ ~/2m} a (x-x') 

- ig F (0 +) p+ (x- x') = a (x- x'), 

{ia 1 at- ~/2m- 2[L} ft+(x- x') (7) 

+ ig P+ (0+) d (x- x') = 0. 

Here terms are omitted which correspond to the 
first two terms in Eq. (5), inasmuch as they only 
change f.J., which one can neglect, and the notations 

Ft~ (0+) = e-2ifl.t (~j- (x) ~t (x); __ lim Ft0 (x- x') 
x- x'(t>t') 

and introduced, and correspondingly, 

F "'~ (O+) = e2ifl.t <Ycx (x) ~ 13 (x)). 

The complex conjugate yields 

(Ft~ (0+ )* = - F "'~ (0+ ). (8) 

We transform in Eqs. (7) to the Fourier components 
of all functions, for example, 

G "'~ (x- x') = (27tf4 ~ G "'~ (pw) exp { ip (x-x') 

- iw (t- t')} dwd3p. 

Denoting w - fJ. = w', we find 

where 

(w'- ~p) G (pw)- igF (O+) p+ (pw) = 1, 

(w' + ~p) p+ (pw) + igF+ (O+) G (pw) = 0, 

~P = p2 j2m - fL = Vp (p- Pp), 

(9) 

and PF is the Fermi momentum. In what follows, 
we shall only have w' in the formulas, hence we 
shall omit the prime. 

It follows from Eq. (8) that F ( 0+) and F+ ( 0+) 
have the following matrix form: 

ft+(O+)=J(_~ ~)==Ji; F(O+)=-Jf, 

/2 = -E; (10) 

equal both to F+ ( pw ) and F ( pw ) , and the Green's 
function, in accord with (9), is proportional to the 
unit matrix. Substituting (10) in (9), we obtain 

Hence 

where 

(w2- ~~- g2J2) p+ (pw) =- igJ, 
(w- ~p) G (pw) = 1 + igJ p+ (pw). 

J 
p+ (pw) = - ig -----=--

w" -1;~- .112 

(11) 

(12) 

As is evident from the first equation of (11), 
F+ (pw) is determined with accuracy up to a solu
tion of the homogeneous equation of the form 
A ( p) o ( w2 - ~~ - .6.2 ). It is not difficult to verify 
the fact that this term reduces in the expression 
for G ( pw) to an arbitrary imaginary part. In 
other words, Eqs. (11) determine only the real 
part of the Green's function. 

We determine the rule for circling the poles in 
(12), making use of a theorem given by Landau, 5 

according to which the imaginary part of the Green's 
function of a Fermi system is positive for w < 0 
and changes sign in the transition from negative to 
positive frequencies. 

As a result, we obtain 

p+ (pw) =- i-gJ j (w- Ep + io) (w + Ep- io), (13) 

G (pw) = u~ (w- Ep + i0f1 + v~ (w + Ep- iop, (14) 

where E0 = .J~b + .6.2 and the functions f.J.~ and v~ 
are equal to 

(14') 

For the determination of the quantity D., we make 
use of the fact that 

J = (2r:f 1 ~ p+ (pw) dw d3k. (15) 

Substituting (13), we obtain the equation 

g ~ d3k 1 = - z (2 l" V <I~ I< x). 
7t q + .112 

(16) 
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For small g < 0 (attraction), this eqtJation has a 
solution of the form 

where 
P = PF I g I m I 2rr2 • 

The positive pole in (14) determines the excitation 
spectrum which, as is shown, has a gap of magni
tude ~- These results coincide with those ob
tained in Refs. 2 -4. 

The chemical potential p, is connected with the 
particle number density by the relation 

N IV=<'~+ (x) ~ (x)> = - i (2'-f4 ~ Gaa (pw) ei"'8 dwd3p, '(17) 

with accuracy up to small exponential terms: 
P, = EF· 

The method laid out also permits us to make 
use of it for temperatures differing from absolute 
zero. In this case we consider the mean Green's 
function (thermodynamically averaged) 

Ga~ (x- x') 

{
0+1-'N-E \ + 

=-i~exp T nJ(niT(If~(x)ljJ~(x')in), 
n 

where Q is the thermodynamic potential in the 
variables T, V, p,. As is well known, the result 
of averaging does not depend on whether it is car
ried out with the use of a Gibbs distribution or 
over the stationary state with a given energy. This 
corresponds to the choice of the quantity E as a 
thermodynamic variable, in place of the tempera
ture T. Taking the averaging in such a fashion we 
get the earlier equations (11) for the quantities G, 
F+ and F, with this difference, that the corre
sponding averaging of T products are taken not 
over the ground state of the system but over a 
state with total energy E equal to the energy of 
the system at a given temperature. Equations (11), 
as we have already noted above, determine uniquely 
only the real part of the Green's function G ( pw), 
which is evidently equal to the real part of Eq. (14). 
We write down the general solution for the function 
F+ (pw ): 

p+ (pw) =- igJ 1 (w- s, + io) (w + s,- io) 

+ A1 (p, T) o (w- s,) + A 2 (p, T) o (w + s,). (18) 

We have made use of the fact that 1/ ( x =F io ) = 
1/x ± mo ( x). The value of the quantities A1 ( p, T) 
and A2 (p,T) can be obtained from the relations be
tween the real and imaginary parts of the Green's 
function, 5 which has the following form at tempera
tures different from zero: 

+oo 
ReG (w) =- ~ \ coth2xT Im 0 (x) dx. 

1t j w-x 
-00 

We obtain 

and for the Green's function, 

G (pw) = u~ (w- s, + iop + v~ (w + s,- iop 
+ 2rrin (s,) [u~ o (w- s,)- v~ o (w + s,)], 

(19) 

where n ( Ep) has the form of the Fermi distribu
tion of excitations at the given temperature: 

n(s,) = [exp(s,IT) + IP. 

The excitation spectrum is then 

Er=V~~+~2, (20) 

where ~ is a function of the temperature. Con
dition (15), upon substitution of F+ (pw) in the 
form (18) in it, gives a relation which determines 
the magnitude of the gap in its temperature depend
ence: 

[g[ \d3 k(1-2n(ek)) 
I = 2 (2rr)3 j ; ' (I~!< x). ' ~ q -t- fl2 (T) 

(21) 

Equation (21) was obtained by Bardeen, Cooper and 
Schrieffer3; it was found that the magnitude of the 
gap ~(T) vanishes at T = Tc "'~(0). We shall 
show briefly how calculation of thermodynamical 
quantities is carried out by our method. 

The heat capacity per unit volume is equal to 

Vcv = (oE I oT)v. 

The quantity 

is expressed by the function of G, F+ and F with 
accuracy up to inconsequential (constant in temper
ature) terms in the following fashion: 

E = 2V (2rrr3 ~ ~, [v~ (I - n (s,)) + u~ n (s,)J d3p + gV J2. 

The total contribution to the heat capacity at 
such temperatures gives the interval l~pl « K. 

Substituting here for the functions u~ and v~ their 
expressions (14'), and making use of Eq. (21), we 
get for the heat capacity 

i.e., the ordinary formula for heat capacity of a 
gas of Fermi excitations with a spectrum (20). 
Computation of the heat capacity and the value of 
the gap in its temperature dependence was given 
in Ref. 3. 
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The methods of irreversible thermodynamics are applied to derive the time variation of mag
netization of ferromagnetics. The role of spin-lattice relaxation in the phanomenon of ferro
magnetic resonance is discussed. The resultant equations are compared with those of Landau
Lifshitz and Bloch. 

l. In the observation of ferromagnetic resonance, 
the ferromagnetic specimen is placed in a constant 
magnetic field H0 = Hz. This magnetizes the sam
ple to saturation. A radiofrequency field h is then 
applied perpendicular to H0• The amplitude of the 
field h is usually taken to be small ( h « H0 ); 

therefore, the magnetization vector M differs only 
slightly in direction from H0• In experiments on 
the study of relaxation in perpendicular fields, a 
strong radiofrequency field of high amplitude was 
applied. This produced a significant deviation of 
M away from H0• 

For the determination of the frequency depend
ence of the components of the magnetization Mx, 
My, Mz of the ferromagnetic, there are used the 
equations of Landau-Lifshitz 1, Bloch,2 or various 
modifications of these equations,3 which are fre
quently put together without sufficient basis. 

In the present paper, it is shown that as a result 
of the application of irreversible thermodynamics, 
one can obtain (under very simple and general as
sumptions) equations for the change in the magne-
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tization with time, with consideration both of spin
spin and spin-lattice relaxations, and the role of 
the latter in the phenomenon of ferromagnetic 
resonance can also be judged. 

From the viewpoint of thermodynamics, we can 
divide the system of spin moments, which corre
spond to the magnetic properties of the ferromag
netics, into a separate subsystem with temperature 
T (the spin system). We shall consider the re
maining degrees of freedom of the entire system 
[analogously to what was done in the thermodynamic 
theory of paramagnetic relaxation4] to be thermo
statted, the temperature of which (To) we shall 
consider fixed in the current research. We can 
show that the latter assumption is related to the 
conclusions made below and it is easily based on 
them. 

If the subset is found in thermal equilibrium 
with the thermostat or is isolated completely from 
it, and the magnetization M has a non-equilibrium 
value, which does not correspond to the field H, 
then we shall call the process of the approximation 


