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iting values for their cross sections. 
Similar considerations hold also for K mesons. 

This means that at sufficiently high energies (of 
the order of 10 10 ev, if electromagnetic interac­
tions are not taken into account) the · K+, K-, K0, 

and K0 mesons should all have the same total 
cross section. Similarly, the 7T+ and 7T- cross 
sections should also approach equality as E - oo •7 

If we apply our result to hyperons, we obtain the 
following. 

(1) The A and anti-A (i.e., the A) have the 
same cross section fJ' A ( oo). 

(2) The !:+, !:-, !:0, !:+, ~-. and !:0 cross 
sections approach the common value fJ'!: ( oo) as 
E __.. oo. 

(3) The :s;-, 3°, :[-, 8o have the same cross 
section fJ'-;;< ( oo). 

~ I 
We note also that from (2), (2 ), and (9) it fol-

lows that at large energies the main contributions 
to D+ (E) and D _ ( E ) are proportional to E 
and differ only in sign. This together with (9) 
shows that the differential cross sections for elas­
tic scattering of nucleons and antipucleons by nu­
cleans through the angle zero approach equality as 
E __.. oo. 

In conclusion, I should like to thank N. N. Bo­
goliubov, B. L. Ioffe, L. D. Landau, B. V. Medve-

dev, D. V. Shirkov, and I. M. Shmushkevich for 
interesting discussions concerning this work. 
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Gibbs' statistical method is used to derive general formula which permits one to determine 
fully the stationary probability density as well as the transition probability density in a non­
stationary process for an arbitrary generalized coordinate, provided the behavior of the mean 
value of the latter is known in the presence of (or after turning on) additional forces acting in 
the direction of this coordinate. 

IT is well known that, using general methods of 
statistical mechanics, we can derive exact relation­
ships which enable us to reduce a calculation of 
fluctuations and correlations of various quantities 
(among them time correlations) to a determination 
of average values of these quantities in the pres-

ence of (or after turning on) additional constant 
forces. 1- 4 

It was shown in Ref. 5 that all the principal mo­
menta determined in fluctuation theory, as well as 
in the theory of Brownian motion, can be computed 
by this method. 
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It will be shown below that not only momenta but 
also the corresponding coordinate probability den­
sities can be exactly determined, provided one 
knows the behavior of these coordinates in the pres­
ence of additional constant forces or forces which 
were turned on at the initial instant. 

1. STATIONARY PROBABILITY DENSITY OF A 
GIVEN VALUE OF A COORDINATE 

Let X be the aggregate of all the canonical 
variables of the system, q (X) some generalized 
coordinate (from now on we confine ourselves to 
the one-dimensional case to simplify the deriva­
tion), and w (X) the stationary probability density 
in phase space. Then the probability density for 
q (X) to have a given value q is 

W (q) = ~ 3 {q- q (X)} w (X) dX 
(X) 

+oo 

= 2! ~ ei~q ~ e:_i~q(XJ w (X) dX d~. (1) 
(X) 

In the case of a canonical distribution we have 
w (X)= exp { '11- H (X)/8}, and consequently 

~ e-i~q<X>w (X) dX = ~ exp {['P'- H (X)- aq (X)] I 8} dX 
(X) (X) 

= e<'Y--'Y (a))/e = e-t.'Y(a)fe, (2) 

where a = i~ 8, and '11 and '11 ( a) are determined 
from the conditions 

e- 'Yfe = ~ e--H<XJ/e dX, 
(X) 

e-'Y(a)fe = ~ exp { -[H (X)+ aq (X)] I 8} dX. (3) 
(X) 

Obviously '11 has the meaning of the free energy 
of the original system, and '11 (a) has the meaning 
of the free energy of the system in the presence of 
an additional constant force -a acting in the di­
rection of the coordinate q(X). Thus, according 
to (1) and (2) 

+co 
1 \ {· I'.'I"(a)} W (q) = 2,. .l exp t~q - -----e- d~. 

-oo 

This formula makes it possible to compute the 
sought probability density W ( q), provided we 
know ~ '11 ( a) as a function of the force a = i~ 8. 

(4) 

According to (3), the mean value of the coordi­
nate q (X) over the ensemble with an additional 
force -a is qa = 8'11 (a )/8a, hence 

a 

L\ 'Y (a) = ~q~d<X. (5) 
0 

Formula (5) enables us to determine ~'11 (a) 
from empirical data which give the dependence of 
the mean coordinate on the external force a in an 
isothermal process. 

Let us illustrate what we said above using two 
simple examples. 

(a) Coordinate probability of a harmonic oscil­
lator. The equilibrium condition for an oscillator 
in the presence of an additional external a has 
the form 

kq'"+ IX= 0, 

hence -qa =- a/k (k is the elastic coefficient). 
According to (5) 

a 

L\ 'Y (a) = ~ q'"d<X = - a2 1 2k = (82 1 2k) 1;2 • (5') 
0 

Substituting (5') into (4) and integrating we get 

, ;-k ( kq2) 
W (q) = V 2,.e exp - ---ze , 

i.e., the Boltzmann distribution. 
(b) Probability of volume V occupied by an 

ideal gas. In this case q = V, and va is found 
from the equation of state va = N8/ ( p + a) 

a -

L\'Y(1X)=~V'"d<X=N8In(l+f)=N8ln(l+i ~ ~;), 
0 

where V = N8/p is the equilibrium value of the 
volume. Finally we find 

+co iV~ 
W (V) - _!_ \ e d'; 

- 2ot J (1 + iV~ I N)N 
-co 

1 (NV \Nexp(-NV !V) 
= V \ v ) (N -1)! (4") 

In the case of small fluctuations (IV - VI/V « 1 ), 
(4") becomes a Gaussian distribution. 

2. TRANSITION PROBABILITY DENSITY 

Let W ( q, t; q0, t0 ) be the probability density of 
transition of the s~rstem from the point q0 at the 
instant t0 to the point q at the instant t, and let 
W0 ( q0 ) be the probability density of the initial 
value of the coordinate. Further, let us introduce 
the notation: 

W1 (q,t; qo, to)= W' (q,t; qo, t0) W0 (q0). (6) 

The function W ( q, t; q0, t 0 ) is uniquely determined 
by its characteristic function cp 1 ( ~, t; 1], t 0 ) so that 

-t-co+co 
W1(q, t; qo, to)= (2otr 2 ~ ~ ei~q+i~q'?1 (~. t; "ff, to) d¢ d~. (7) 

-oo-co 
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The characteristic function cp1 is in turn de­
termined if all the moments of the quantities q 
and q0 are known, namely: 

<p1 (;, t; '"IJ, fo) = L q{q~ (- i~)i (- i'"IJ)k I j!k!, 
j, k 

where 

(8) 

(9) 

To compute these momenta, we make use of the 
general statistical method of Gibbs. 

If we let X0 be the aggregate of all the canoni­
cal variables at the initial instant, and xt be the 
canonical variable of the same phase points at 
time t, then 

;jiq~ = ~ qi (Xt) qk (XD) w (XO) dXo, (10) 
(X,) 

where w ( X0 ) is the probability density of the ini­
tial phase X0 and xt are assumed to be expressed 
in terms of X0, t, and t 0 in accordance with the 
canonical equations of mechanics with the Hamil­
tonian function H (X): xt =X ( X0, t 0, t ). In the 
case of the Gibbs canonical distribution 

w (X0 ) = exp {'l"0 - H (X0 ) I 8}. 

Let us introduce (so far, purely formally) an 
auxiliary function Z ( a, t; {3, t0 ), which we define 
as 

Z (0':, t; ~. t 0} = ~ exp {- [H (XO) 
(X') 

By simple differentiation we find 

where 

(12) 

Z0 _ Z (0, t; 0, t0 ) = ~ e-H(X')I9dX0 = e-'1!,/e. (13) 
(X') 

Substituting (12) into (8) we find the character­
istic function 

C?l (;, t· "' t ) = ___!_ )1, [ af+kz (a, t; ~- t0)] 
' ·u o z -..~ · n 

0 j, k aaJa~ a~~~o 

(i1:;0)f(i'fJG)" 1 
X j!k! = Zo Z (a, t; b., t0 ), (14) 

where the notation i~8 =a, i718 = b is introduced. 
We now determine Z (a, t; {3, t0 ). Writing 

Z (oc, t; ~. t 0 ) = exp {- 'f' (oc, t; ~. to) I 8}, (13') 

we have by virtue of (11) 

~ exp {['I" (u:, t; ~. t0 )- H (XO)- ocq (XI) 
(X,) 

for any t. 

(15) 

Differentiating (15) with respect to time W€ get 

iW (oc, t; ~. t0) I at= rx.q'·~. (16) 

o/ (rx., t; ~. t0 ) = 0': (q~· 0 - q~'~) +'I" (0':, t0 ; ~. t0 ), 

where 

qr· 0 = ~ q(X1)exp{['l"(O':, t; ~. t 0)-H(X0 ) 

(X') 

- rx.q (X1)- ~q (X0)] I 8} dX0. (17) 

Quantity q?•/3 can be interpreted as a macro­
scopic coordinate which is obtained as a result of 
averaging of q (X) over the ensemble separated 
from the original equilibrium ensemble by the fol­
lowing process: 

(a) Before the time t = t 0, the system was 
acted on by a constant force - ( a + {3) so that the 
system was in equilibrium, having an equilibrium 
coordinate <i?+f3 and a corresponding free energy 

a+0 

o/ (rx., t; ~. t0 ) = o/0 + ~ q'-d"A (18) 
0 

[see (5)]. 
(b) Starting from the time t 0, the system con­

tinues to be acted on only by the constant force 
-a; as a result, the system comes out of equilib­
rium and undergoes a transition. 

Thus Ci? ,{3 can be interpreted as an average 
displacement of the coordinate q (X) during the 
time t - t0 under the action of a constant force 
-a. According to (a), the initial value of the coor­
dinate is Ci.oa,{3 = Ci?+f3. 

Substituting (13), (13'), (14), (16), and (18) into 
(7), and taking (6) into account, we obtain the final 
formula for the transition probability density: 

W (q, t; q0 , t 0 ) (19) 
+co+oo 

~ 1 \ \' { ·t + .. ~ 'Y (a, t; b, lo) \ d' d 
~ (2rr) 2 W 0 (q0 ) ~ .) exp tc;q 1 'lqo- 0 1 ; 'fi, 

where 

(20) 

The initial probability density is found from 
formulae (4) and (5). 
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Thus, if (if•b and qA are known from the phe­
nomenological equations of motion or from the em­
pirical data, we can obtain an expression for 
W ( q, t; b, t0 ) by substituting the value of 
AlJI (a, t; b, t 0 ) found from (20) into (19) and inte­
grating. 

In this way the suggested method makes it pos­
sible to solve a much wider class of problems than 
can be done with the known methods of the theory 
of Brownian motion. 

If the system is subjected to the action of forces 
independent of the coordinate q, the transition 
probability density depends only on the magnitude 
of the displacement q - q0, i.e., 

W(q, t; q0 , t 0) = W(q-q0 ; t-l0 ). 

Using arguments analogous to those cited above, 
we obtain the following formula for the transition 
probability density: 

+co 

W (q- q0 ; t- t 0 ) = 2~ ~ exp {i~ (q- qo) 
-co 

-Ll'f'(a, t; t 0)jf1}d';, (19') 

Ll '¥(a, t; t 0 ) = ailqf , a = i~8, (20') 

and Aqf is the mean displacement of the coordi­
nate q (X ) during the time t - to under the action 
of an additional constant force -a. 

Let us illustrate the method developed above 
with a simple example of a Brownian particle in 
the gravitational field. 

According to the above, the mean displacement 
A<lf which we are interested in obeys the phenom­
enological equation 

with homogeneous initial conditions. (Here m is 
mass, y the coefficient of friction, and g the ac­
celeration due to gravity.) The solution of this 
equation for t = 0 is 

Llqa=g-at_g-a(1-e-><1), x=...l. (21) 
t mx , nrx.2 m 

Substituting the value of AlJI (a, t; to) found 
from (21) and (20') into (19') and carrying out the 
integration we easily find 

-. ~~ { mx2 [q - Q (1)]2 } (22) 
W (q- qo; t) = V hi::Jf (t) exp - 4lclf (1) 

Here 

Q (t) = ..L t- _g_ (1 -- e-><1) 
mx mx2 

is the mean coordinate of the particle at the in­
stant t, 

f (t) = xt- (1- e-"1). 

Formula (22) describes a Gaussian distribution 
which spreads with time; its center moves accord­
ing to the laws of mechanics. 

It should be mentioned that the transition prob­
ability density W ( q- q0; t), (22), which was ob­
tained above on the basis of general principles of 
statistical mechanics, also satisfies a correspond­
ing equation of Einstein - Fokker -Planck 

aw = D (t) ra•w _ ..Law) 
at \ aq2 0J aq ' 

(23) 

being its source function. The diffusion coefficient 
D ( t) depends on time and is equal to the mean 
velocity of the particle when it is acted on by an 
additional constant external force equal to unity. 

For t » K-1 (diffusion mode) D ( t) - e/y 
and equation (23) takes on its usual form. 

For t « K-1 (inertial mode) formula (22) gives 

W (q- q0 ; t) dq = V 2: 0> exp ~ -- ~~2) dv (24) 

(where v = ( q - q0 ) t], i.e., Maxwell distribution 
corresponding to the fact that before the collisions 
take place, the particle undergoes inertial motion. 
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