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The relation between the two main methods for constructing the wave function of a many-elec
tron system, the group-theoretical method and Fock 's method, is considered. It is shown that 
the coordinate function obtained from the first method satisfies Fock's condition of cyclic sym
metry. 

AssuME that the coordinate and spin variables 
separate in the energy operator of an n-electron 
system and, in addition, that the spin part Hs of 
the energy operator is spherically symmetric: 

H = H0 (1, 2, ... , n) + Hs (crl, cr2, ... , crn)· 

Then we construct a total wave function, which 
satisfies the Pauli principle and is an eigenfunc
tion of the square of the total spin S2, if we know 
the coordinate eigenfunction l{J ( 1, 2, •.. , n) of 
the operator H0 and the spin eigenfunction x ( a 1, 
a2, ••• , an) of the operator Hs. This construc
tion can be done either by using the methods of 
group theory1 or by the method proposed byFock.2 

In both methods, both the coordinate and the spin 
functions must satisfy definite symmetry condi
tions with respect to permutation of their argu
ments. It is obvious that the two methods of con
struction must be equivalent, so there should be 
a connection between the two kinds of symmetry 
conditions. We shall treat this relation. 

It follows from group theory that the symme
try of the coordinate wave function must be de
fined by a Young tableau having two columns (see 
figure). This means that a function of the re
quired symmetry can be obtained from an arbi
trary function if we first symmetrize with respect 
to the pairs of variables in each row of the tableau, 
i.e., (1, k + 1), (2, k + 2), ... , (k, 2k), andthen 
antisymmetrize with respect to the columns, i.e., 
with respect to the variables ( 1, 2, ... , k) and 
(k + 1, k + 2, ... , n). If we denote the symme
trizer and antisymmetrizer in the set of variables 
(a1, a 2, ••• , am) by S (a1, a 2, ••• , am) and 
A ( a 1, a 2, ••• , am) respectively, the Young op
erator can be written as 

J (I, 2, ... , k I k +I, k + 2, .... n) ~A (I, 2, ... , k) 
k 

X A{!?+ I, k + 2 .... , n) ~ S (i, k + i) = A1A2S. 
i=l 
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(Obviously the sequence of variables in the Young 
tableau may be different; we would then get differ
ent operators; the number of linearly independent 
operators determines the dimensionality of the rep
resentation of the symmetric group which is re
lated to the given Young pattern.) The symmetry 
of the corresponding spin function must be deter
mined by the transposed Young tableau. It is ob
vious that k :::: n/2. The total spin is n/2 - k. 
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In Fock 's method, the coordinate wave function 
must satisfy the following three conditions: (a) 
antisymmetry in the variables 1, 2, ... , k, (b) 
antisymmetry in the variables k + 1, k + 2, ... , 
n, (c) cyclic symmetry: the operator 

must annihilate the coordinate wave function. Pij 
is the operator for transposition of the variables 
i and j. 

A function which is symmetrized according to 
the Young scheme obviously satisfies conditions 
(a) and (b). We shall show that such a function 
also satisfies the cyclic symmetry condition (c), 
i.e., that the identity 

CDJ = 0. 

is satisfied. We shall verify this by showing that 
all the terms in the product <I>A1A2S cancel in 
pairs. Consider one of the k! (n- k)! terms in 
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the product A1A2• It can be written as a permu
tation 

( 
I, 2, ... , k 

± 0(1, 0(2, ..• , O(k 
I k+ l,k+2, ... ,n\) 

O(h-t-1• O(h-t-2• • • • , O(n. ' 

where a 1, a 2, ••• , O!k is a permutation of the 
sequence 1, 2, ... , k; O!k+t• O!k+2, ••• , an is a 
permutation of the sequence k + 1, k + 2, ... , n; 
the sign is determined by the parity of the per
mutation. 

We now apply to this term one of the transpo
sitions in the operator cl>. The following identity 
is easily shown: 

(k, a) (".b .. . , ... b + k ... d ... ) 
\a, k ... k . . . . . . c ... a .. . 

= ( k, c) (.· ... b ... , .... b + k . .. d .. . ) ( b,. b + k) ; 
,c, k ... k . . . . . . a ... c . . . b --r k, b 

where 

I <;b<;k, k+ I -<,a-<,n, k+ I -<,c<;n, k +I -<,d-<,n. 

The second factors on both sides of the identity 
are contained in the product A1A2, and differ only 
in a single transposition, so that they appear in 
the product with opposite signs. The first factors 
on each side are contained in the operator cl>. Fi
nally, the operator 

does not change the operator S. It follows that the 
corresponding terms in the product ci>A1A2S can
cel against one another. 

A special case occurs when a= c, and conse
quently b + k =d. Then we can use the identity 

(k,a)( ... b ... , ... b+k ... ) 
,a, k ... k ... ... a .. . 

= (" . b .. . , ... b + k .. . ) ( b, b+k) 
. . . k. . . . . . a . . . b+k, b ' 

from which it follows that such a term in the prod
uct cancels against the product of the first term in 
the operator ci> (the identity operator) with the 
same term in the product A1A2• We have thus 
proven our assertion. So every function which is 
symmetrized by using the Young operator satis
fies Fock's conditions. 

The reverse relation is obviously more com
plicated since a function which satisfies condi
tions (a), (b), and (c) corresponds in general to a 
set of Young tableaus with all possible permuta
tions of the variables k + 1, k + 2, ... , n. Any 
linear combination of the corresponding operators 
(among which there may be a linear dependence), 
when acting on an arbitrary function, gives a func
tion which satisfies Fock's three conditions. 

In comparing the two methods we note that 
symmetrization by means of the Young operator 
is convenient when we have to construct a function 
with particular symmetry properties from some 
unsymmetric function. But if the function is al
ready known, it is easier to check whether or not 
it satisfies Fock 's symmetry conditions than to 
make the analogous check using the Young opera
tor. Fock's conditions do not give us a specific 
recipe for constructing a function which satisfies 
them; recipes for various special cases have been 
given.2•3 From our proof it follows that the gen
eral recipe is to symmetrize by using the Young 
operator. 

Thus the two methods, which are basically 
equivalent, supplement one another in various 
cases. 

The methods for constructing the total wave 
function from the coordinate and spin functions 
using the method of Fock or the group theory 
method are also different. The relation between 
these methods requires further consideration. 

In conclusion I thank G. F. Drukarev; the pres
ent note was written as a result of discussions 
with him about this class of problems. 
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