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Landau's theory of a Fermi liquid is employed to describe the optical properties of metals 
in the infrared region. It is shown that the results obtained differ substantially from the 
corresponding results of the ordinary electron theory of metals. 

l. In the region of infrared radiation ( w/27r = 1012 

to 3 x 10 14 sec-1), great interest (from the view­
point of obtaining information on the properties of 
the conduction electrons of a metal1) attaches to 
the range of frequencies much less than the fre­
quencies of quantum absorption, and at the same 
time frequencies which are large in comparison 
with the collision frequency 1/T (T is the char­
acteristic time of free flight of the electrons* ) . 
For many metals, the frequency of quantum ab­
sorption is of the same order of magnitude as the 
frequencyt w0 = ..J 47re2N/m ~ ..J 3 x 109 N of 
plasma oscillations of the conduction electrons, 
which value appreciably exceeds the upper limit 
of the infrared region. Therefore we shall con­
sider frequencies which satisfy the inequality 

(1) 

The optics of metals in such a region were 
studied by a number of authors. 1•3•4 In these re­
searches, as is usually done in conduction theory, 
the representation of the conduction electrons as 
a gas of noninteracting particles is employed as 
one of the principal assumptions. In reality, the 
interaction between the electrons is by no means 
small, and they ought to be considered as a degen­
erate electron liquid. The latter is now possible 
with the use of the theory of a Fermi liquid for­
mulated by Landau5 and extended in Ref. 6 to an 
electron liquid. 

An essential difference 'was discovered in Ref. 
2 of the complex dielectric constant of a metal in 
the infrared region and the corresponding expres­
sion for ordinary theory.1•3 However, only the 
real part of the complex dielectric constant was 
considered in that work. Below, we have obtained 

*At room temperature, 't 0.3 x 10-" sec. 
tFor determination of N, see Refs. 1, 2. For many metals, 

N is of the order of 0.5 x 10-23 cm 2 and, consequently, w0 

"' 1016 sec-' 
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an expression for the imaginary part of the con­
stant in the case in which such exists ( see Ref. 1). 
In the case of an anomalous skin effect in the in­
frared region, an expression is obtained below for 
the surface impedance of the metal. In all these 
cases, the theory of the Fermi liquid modifies 
considerably the description of the properties of 
the metals. 

We note that in the region of small frequencies, 
in which we can make use of the statistical char­
acteristics of the metal, the theory of conductivity, 
which starts out from assumptions on the electron 
liquid, does not differ from the usual theory. The 
same also applies to the prominent anomalous skin 
effect.2 

2. The electrons- quasi-particles produced by 
the electrons of the liquid -are described by the 
equation 

an + ~ ~ _ an ~ + e (E + J_ [ a~ H])' an = 1 ( ) (2) at arap apar cap ap n 

in the theory of a Fermi liquid.5•6 Here n is the 
distribution function, I ( n) is the collision inte­
gral, and E is the energy of the quasi -particle. 
In this case, 

os = ~ dp'<P (p, p') on'. (3) 

The latter relation is useful because we are almost 
always interested in states which differ slightly 
from equilibrium, in which 

n =no+ on, ion i <'?';:no= (21t;)3 [exp t\-;: ~-'} + 1 r\ (4) 

In this case the theory of the Fermi liquid gives 
the following expression for the density of the elec­
tric current: 

j = e ~ d p n :~ = e ~ d p {on - os ~;:} ~; . ( 5) 
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As is shown in the Appendix, the collision inte­
gral in the theory of the Fermi liquid is identical 
with the usual collision integral, but is only writ­
ten down for the combination 6n - oE 8n/8E0.* 
Thus, in Eq. (2), all the quantities have a concrete 
meaning. Considering the variable field to be a 
periodic function of time with frequency w, and 
taking Eqs. (3) and (4) into account, we can repre­
sent Eq. (2) in the following form 

iwBn + (vz :z + f [vxH) /P) {on- os ~=-~} 

- I (on - Be ono) = - e Ev ono oeo oeo ' (6) 

where v = 8E/8p is the velocity of the electrons 
in the equilibrium state. Here it is assumed that 
the metal is bounded by a plane surface, perpen­
dicular to the z axis. Moreover, it is assumed 
that there is also a constant field H0• 

3. In the infrared region, the skin depth is ap­
proximately c/w0• This leads to the circumstance 
that the term containing the coordinate derivative 
in Eq. (6) is of the order of (v/c)w0on. In metals, 
the velocity of the electrons is about 108 em/sec. 
For this reason, Eq. (6) can be written for zeroth 
approximation in the form 

(7) 

From this we can easily determine the zeroth ap­
proximation of the complex conductivity tensor 
a a{3 ( j a = a a{3E {3) and correspondingll:' the com­
plex dielectric constant tensor E'a_(3 = Ea(3 - i47!' 
X C1a(3/w, where Ea{3 is that part of the dielec­
tric constant which is not occasioned by the con­
duction electrons (in the following equations, this 
quantity is omitted, since its relative contribution 
is small for w « w0). 

It is easy to see that in the approximation em­
ployed, E1a(3 is real and is equal tot 

(8) 

where the integration is carried out over the 
Fermi surface, dS is an element of that surface 
and 

V ~ = v~- I dp'CfJ (p, p') an? v'. 
j aeo " 

(9) 

*We note that for static problems of conduction theory, this 
reduces to a coinciding of the results of ordinary electron 
theory of metals with that based on the application of the 
theory of a Fermi liquid (for further details, see Ref. 7). 

t Correspondingly, 

(8') 

It is also convenient to determine the value of the 
surface impedance of the metal: 

Zx = 41tEx (0) I cH y (0) = 

- (47tiW I c2) Ex (0) IE: (0) =Ex (0) I Jx, (10) 

where E i ( 0) and Hi ( 0) are the values of the 
field at the surface of the metal and Jx = 
00 

~ dz jx ( z). 

0 
In the zeroth approximation, it follows from 

the condition (1) that the electrical charge density 
must be zero. In this connection, the continuity 
equation has the form div j = 0. The latter leads 
to the fact that jz = 0 in this approximation. 
From this condition we get [by making use of the 
expression for the conductivity tensor (8')] 

E(o) = - (cr(O) E(o) + a E(O)) I (o) 
z zx x zy y O"zz • (11) 

Finally, eliminating the magnetic field and the z 
component of the electric field from Maxwell's 
equations, we get, in zeroth approximation, 

E(O)" _ 47te2 (!!_) E(o) = O " • ~ , (<X, ~=X, y), 
c" m "'~ 

(12) 

where 

( N) = 2 {' dS m "'~ (:07t"/i)3 ~ -v- v" v ~ 

(.\v"'VzdS!v) (SvzV~dS!v) }· 

S vzVzdS / v (13) 

Directing the x and y axes parallel to the 
principal axis of the tensor N/m, we get (see 
Ref. 3) 

where 

Ox = c I Dx, Oy = c I Dy, n; = 47te2 (N I m)x, 

n; = 47te2 (N I m)y, 
(15) 

and (N/m)t is the principal value of the tensor 
(N/m). The solution (14) reduces to the following 
formulas for the zeroth approximation of the sur­
face impedance 

z~o) = 41tiWOx I c2 = 47tiW I cOx; 
(16) 

Corresponding to the fact that in this approxima­
tion, E' is real, the expression obtained for the 
surface impedance is a pure imaginary. 
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4. The emergence of an imaginary part of the 
complex dielectric constant, or of a real part ( R) 
of the surface impedance, is brought about by the 
small terms of Eq. (6), which were neglected in 
the zeroth approximation of Eq. (7). Let us first 
consider the case in which the collision integral 
and the term containing the constant magnetic 
field dominate the term of Eq. (6) containing the 
coordinate derivative. Obviously, this takes place 
under the condition that 7 

(vlc)w0 <{;ll" or Wff-eH 0 Imc. (17) 

Solving Eq. (6) in first approximation (7), we 
easily find that 

cr~1J=- :~ (21t~)• ~d;v~{J(Y.~)- ~ ([vxlfo] :P)v~}.(18) 

Here it is taken into account that 

I (V Ban0 I os0) = (on0 I os0) J (V ~). 

Correspondingly, the imaginary part of E1 takes 
the form 

In the case in which there is a mean time of flight 
T, we must consider J = -1/T (p) in Eq. (19). 

The situation is somewhat more complicated in 
the case in which 

(20) 

In such a case we say that an anomalous skin ef­
fect occurs. By virtue of the fact that the correc­
tion term of Eq. (6) now contains a space deriva­
tive, it is necessary, for solution of the kinetic 
equation, to make use of the boundary conditions 
of the function on. As such a condition, we as­
sume that as z - oo, on goes to zero, while at 
the boundary of the metal, we assume that the so­
called diffuse reflection exists, and on - oE x 
8no/8E = 0 for Vz ~ 0. Such a condition corre­
sponds to the usual8 in the sense that it is written 
for a quantity which determines the current den­
sity, just as is done in the ordinary theory of on. 
Furthermore, in the computation of the correction 
of the first approximation to the current density, 
oj 01 = j~) - j~), we assume that we can use the 
zeroth approximation for the electric field enter­
ing into oja· 

As a result, we get 

00 

'J - \ ' . d - ~ E (0) e" 2 \ dS V V 
fJ ,- .) 01, Z -- ""-" ~ w2 (21t1c)" J v aVz ~· 

o ~ vz>O 

(21) 

Here it is taken into consideration that the Fermi 
surface possesses a center of symmetry and, in 
particular, <I> (- p, - p') = <I> ( p, p'). 

Assuming that the radiation incident on the 
metal is polarized along the x axis, and that in 
this case, by Eqs. (14) and (11), 

E~o) (z) = Ex (0) e-z;ax, E~) = 0, 

(22) 

we find the following expression for the real part 
of the impedance: 

(23) 

We now determine the "oblique" terms of the sur­
face impedance :3 

Zxy = Ex (0) I Jxy--::::: Rxy; E y (0) Jyx = Z yx <=:::: Ryx· (24) 

Here J a{3 is the a-component of the current which 
arises in the metal for incidence of radiation po­
larized along the {3-axis. Employing (21) under the 
condition (22), we get 

( V x - v z .~ v~V~ds:: I v::)}- 1
• 

j v ZVZdS I v 

(25) 
The inequalities (17) and (20) do not always 

hold. Therefore the case is of interest in which 
the skin effect cannot be considered normal, and 
in which at the same time one cannot consider it 
anomalous. The solution of such a problem is 
actually contained in the results worked out above. 

In fact, as follows from Eq. (6), the excitations 
which lead to the correction of the first approxima­
tion are additive. In this regard, the correction of 
first approximation for the current density and 
surface impedance will arise additively from the 
term of Eq. (6) which contains the spatial deriva­
tives (and which is most significant in the anom­
alous skin effect), from the collision integral and 
from the term containing the constant magnetic 
field (which is most important in the region of the 
normal skin effect). In the general case, there­
fore, the usual impedance of the metal can be rep­
resented in the form 

z - z(O) + R(a) + R(H). z - R(a) + R(H) -x _...._.. x x x , xy _...._.. xy xy , (26) 
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with the accuracy considered by us where z(o) 
(a) (a) ' x ' 

Rx , Rxy are defined respectively by Eqs. (16), 
(23), and (25), while ~H) and R(H) can easily 
be obtained from Eqs. (8), (11), and (19). 

5. The difference of Eqs. (8), (13), (23), and 
(25) from the corresponding relations of the re­
search of Kaganov and Slezov9 is due to the func­
tion <P. It is natural to attempt to make clear 
what evidence can be obtained on this function 
from experiments in the infrared region. How­
ever, we can point out at once that the results which 
we have obtained above are always complicated by 
the anisotropies of the metal. Therefore, without 
a knowledge of the Fermi surface, it is difficult to 
obtain information on the function <P from exper­
iments in the infrared region. Evidently, for the 
determination of effects which distinguish the con­
duction electrons from the Fermi gas, we must 
first determine the form of the Fermi surface with 
the aid of experiments in the radio-frequency range 
for the case of a sharply defined anomalous skin 
effect.9 

The results obtained above are greatly simpli­
fied when the metal can be regarded as isotropic.1 

The latter is quite natural for polycrystalline 
samples. We shall consider this case in more 
detail below. Under such an assumption, we have, 
in place of Eq. (8), 

R , 4rte•N 8rtp~ Uom 
es =- mw• , N= 3 (21t1i)" {1 +P~~dQcosXF(cosz)}; 

F · = [2 I (27th )3] <D (p, p') I Vo, (8") 

where Po and v0 are the momentum and velocity 
of the electron on the Fermi surface, m =mass 
of the free electron. Such an expression for the 
real part of the complex dielectric constant was 
obtained in Ref. 2. The non-diagonal elements of 
the tensor of the real part of the complex dielec­
tric constant tensor in the approximation under 
consideration ar_e equal to zero. In the absence 
of a magnetic field, the imaginary part r/, which 
is defined by Eq. (19), is also diagonal and is 
equal to 

(19') 

We note that formulas which contain the collision 
integral are valid even in the quantum case, 10 in 
which the frequency of the light is comparable to, 
or becomes larger than kT/11. In this case, only 
the value of the collision integral changes. 

In the isotropic case, only the nondiagonal 
terms arise, as a result of the constant magnetic 
field. Directing H0 along the z axis, we have 

Ims' =- Ims' 
xy yx 

4TC 8rte2p~t·0 eu H { \ }2 
w 3 (27tli.)•w• ;o 0 1 + P~ J dQ cos xF _ (19*) 

The presence of a magnetic field has no effect on 
the other components. 

Finally, for an isotropic metal, Eq. (25) van­
ishes, while (23) takes on the form 

R .. = 3: ~~ { 1 + p~ ~ dQ cos xF (cos x)} . (23') 

As was shown in Ref. 2, the relation (8), alongwith 
data on the electronic heat capacity of the metal 
and the results of experiments in the radio-fre­
quency region, in the case of a sharply defined 
anomalous skin effect, permits us to establish the 

value of p~ f dQ cos x F (cos x). In other words, 

the possibility is shown of determining the first 
coefficient in the expansion of F (cos X) in Le­
gendre polynomials. Equation (23) points up the 
possibility of a similar estimate of this coefficient. 
Of course, it should be observed that all such est­
imates are essentially connected with the possibil­
ity of using the isotropic model of the metal, and 
this in each case must be done with caution.2 We 
note that in the collision with the surface, the part 
(2) of the electrons can be scattered specularly. 
In this case, the expression obtained above for 
R(a) must be changed by a factor of ( 1 - q). 

In conclusion, I am pleased to express my 
thanks to L. D. Landau for useful discussions of 
the problem, explained in the Appendix. 

APPENDIX 

In order to clarify the form of the collision in­
tegral in the theory of a Fermi liquid for the non­
equilibrium state, we consider as an example col­
lisions with impurities. In this case, the collision 
integral has the form 

I (n) = ~ W' (n; p, p') {n (p') [1- n (p)] 

- n (p) [ 1 - n (p')} a { 5 (p) - 5 (p')} dp'. 

Taking ( 4) into account, we can represent I ( n) in 
the form of a sum 11 + 12, where 

/1 = ~ w (no; p, p') {an (p)- an (p')} 8 { E0 (p)- s0 (p')} dp', 

12 = ~ w (no; p, p') {no (p')- no (p)} a {so (p) 

+Be (p)- s 0 (p')- as (p')}dp'. 

Here, I1 is a quantity which coincides with the 
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collision integral of ordinary theory. 
Further, it is convenient to transform I2 some­

what. In this case, we take it into consideration 
that 

Thanks to the fact that in the law of conservation 
of energy, E = Eo + oE, terms containing only 
n0 (E) fall out, and there are left terms propor­
tional to oE. For the remaining small terms, the 
difference between E and Eo in the conservation 
law is no longer significant. Therefore, 

I ( + , ) \' W ( ') { (, , , , ano \} (, , ano ) } , ( ')d , n0 on = j n0 ; p, p \on - os aE~ . - on- os ~ o s0- s0 p . 

Thus it can be shown that the collision integral 
for states which differ only slightly from the equi­
librium can be obtained by the substitution in the 
conservation law of the equilibrium value of the 
energy, and the replacement of n by n0 + on -
oE 8n0/8E0• 

From these considerations, it is obvious that 
this result does not depend on the particular form 
of the collision integral selected by us, and also 
holds for collisions of electrons with phonons, 
electrons with electrons, etc. In all cases, the 
difference from the ordinary theory of a Fermi 
gas reduces to the fact that we have on - oE x 
8no/8Eo in place of on in the collision integral. 
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