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The effect of a constant magnetic field on the stability of the stationary convective flow of an 
electrically conducting liquid in the space between two parallel vertical plates is investigated. 
The equations for the amplitudes of the perturbations are solved by approximations, using the 
method of Galerkin. The study shows that a magnetic field greatly increases the stability of 
the stationary flow. In the case of a longitudinal field, the instability is always in the form of 
a "standing" perturbation. The critical Grasshof number and the critical wave number for 
standing and running perturbations have been determined as functions of the field strength. 

IN the preceding paper1 we considered the sta­
tionary convective flow of an electrically conduct­
ing liquid between parallel plates, heated to dif­
ferent temperatures, in the presence of an exter­
nal magnetic field. In this paper we consider the 
hydrodynamical stability of this flow. (The cor­
responding problem for the case where the mag­
netic field is absent has already been solved.2) 

The effect of the magnetic field is, firstly, to slow 
down the stationary motion, and secondly, to hin­
der the growth of perturbations; both these effects 
should greatly increase the flow stability. Studies 
of hydrodynamical stability in the presence of ex­
ternal magnetic fields have been made for the case 
of plane Poiseuille flow3•4 and for the flow between 
rotating cylinders.5 No studies of the stability of 
stationary convective flows in a magnetic field 
have been made previously, to our knowledge. 

In this paper we shall investigate the stability 
of convective flow between vertical plates. The 
generalization to the case of arbitrary orientation 
of the plates is more complex than for the station­
ary-flow problem, and can be carried out in a 
manner analogous to that of Gershuni.6 

1. PERTURBATION EQUATIONS 

Let us denote by v0, T0, p0, and H0 the ve­
locity, temperature, pressure, and magnetic field 
strength in the stationary flow, and consider small, 
non-stationary perturbations v, T, p, and H of 
these quantities. In the perturbed motion, the 
quantities v0 + v, T 0 + T, Po+ p, and Ho + H 
must satisfy Eqs. (8) to (11) of Ref. 1. Consider-
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ing that the stationary solution also satisfies these 
equation13, and neglecting the squares of the small 
perturbation terms, we obtain the following equa­
tions for the perturbations* 

av 1 M 2 \ 2 at+ v0 •"Vv + v •"Vv0 =- "'l(P+ Pm H0Hj +"V·v 

M2 + GrT + :p-·(H0 ·"VH +H ·"VH0 ); 
m 

ar 1 ,-,2 
ar+v0VT+vVT0 =yv T; 

aH 1 at +curl (H x v0) +curl (Ho x v) = -\l 2H; 
Pm 

divv = 0, divH = 0. 

(1) 

(2) 

(3) 

(4) 

Let us consider a plane perturbation, in which 
vy = 0, Hy = 0, and all quantities depend only on 
x, z, and t. Then because of (4), we may intro­
duced a flow function +, connected with the ve­
locity components by the relations 

vx =-a'¥ ;az, vz =~'¥;ax, (5) 

and also a vector potential field A given by 

Hx=-aAyjaz, Hz=aAyjax; (Ax=Az=O). (6) 

We assume the dependence of the perturbation on 
z and t to be of the form 

Here k is the wave number and w is the fre­
quency (generally complex) of the perturbation. 
It is well known that the sign of the imaginary part 
of the frequency w determines the behavior of 

*For the notation, choice of units, and orientation of co­
ordinates axes, see Ref. l 
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small perturbations; if the imaginary part is pos­
itive, the perturbation decays with time, i.e., the 
stationary motion is stable. If the imaginary part 
of the frequency is negative, the perturbation 
grows -the stationary flow is unstable. 

Equations for l{J, cp, and e can be obtained if 
we eliminate the pressure from (1) by taking the 
curl of both sides, and expressing the velocity and 
the field in terms of the flow function and the vec­
tor potential in all equations. From this substitu­
tion we obtain differential equations for the ampli­
tude of a perturbation. (The primes denote differ­
entiation with respect to x): 

(•j;IV -· 2k2•f" + k4y)- (iw + ikv0 ) W- k2 ~) + ikv~·l! + GfJ' 

=- ~2 [Hox (q/"- k2cp') + ikHoz (q/'- k2cp)- ikH~z'f ]; 
m (~ 

--}- (cp"- k2cp) + (iw + ikv0 ) cp =Hox ~~ + ikHoz ~; (8) 
m 

- ikT~'f + (iw + ikv0 ) B-} (8"- k28) = 0. (9) 

Perturbations of the velocity and temperature 
must vanish at the boundary between the liquid 
and the plates, so that the boundary conditions for 
l{J and () will be 

~ (- 1) = 'f (1) = 'f' (-1) = •i/(1) = 0, 

B(-1) = 0(1) = 0. (10) 

The perturbations of the magnetic field are not, 
in general, required to vanish at the plates; the 
boundary conditions for the field are the usual con­
ditions at the junction of two media. Thus, field 
perturbations may extend into the medium sur­
rounding the liquid. In this case we must investi­
gate the field in the external region also, which 
greatly complicates the problem. It would be pos­
sible to assume, as Fermi has done 5 in solving 
similar problems, that the surrounding material 
is an ideal conductor; such an assumption would 
naturally lead to very simple boundary conditions. 
In our case, however, it is possible, following 
Stuart3 and Lock, 4 to eliminate the function cp ( x) 
from Eqs. (7) and (8). In order to be able to do 
this we must first simplify the equations by making 
use of the smallness of the parameter Pm. 

In what follows, we shall consider two orien­
tations of the constant external field: (1) a con­
stant, uniform, external field perpendicular to the 
parallel plates, and therefore also perpendicular 
to the velocity vector of the stationary liquid 
flow (for brevity, this case will be referred to as 
the "transverse field" case); and (2) a constant ex­
ternal field in the direction of the velocity, i.e., along 
the z axis (the "longitudinal field" case). We 

shall first simplify Eqs. m and (8) for the transverse 
field case. It has been shown inRef.1 that the ratio 
H02/Hox is proportional to Pm, so that for liq­
uid metals it is extremely small, even for rela­
tively large Grasshof numbers. Therefore in the 
right-hand sides of Eqs. (7) and (8) we may elim­
inate the terms containing the induced field Hoz. 
In the left-hand side of (8), obviously, the only 
important term is the one containing 1/Pm. Thus 
we may write ( 8) in the approximate form 

When this substitution is made for cp" - k2cp, the 
right-hand side of Eq. (7) becomes M2 l{J"H~x· It 
will be recalled that, as a result of our choice of 
units, Hox is equal to ± 1, the two signs corre­
sponding to the two possible directions of the per­
pendicular external field. Thus the right-hand 
side will reduce to M 2l{J". This term obviously 
represents the effect of the magnetic field on the 
perturbations; its effect on the stationary flow is 
expressed in the dependence of the stationary pro­
file v0 on the magnetic field. Finally, for the 
transverse field case Eq. (7) takes the form 

- (iw + ikv0 ) (y"- k2y) + ikv~y + G0' = 0. (11) 

In the longitudinal field case, we have Hox = 0, 
and Hoz does not depend on x. Therefore we 
now have, instead of (8), keeping only the terms 
on the left-hand side which contain 1/Pm, 

The right-hand side of Eq. (~ is now equal to 
- k2M 2l{J (since H~z = 1). The equation for l{J 

in the longitudinal field case can be written 

wv - 2k~·v + k4y + k2 M2·1?) 

- (iw + ikv0) W'- k2·~) + ikv~·ji +GO' = 0. (12) 

Thus the amplitude of the vector potential of 
the field perturbations, cp(x), can be eliminated 
from the equations in both the longitudinal and 
transverse field cases. The problem reduces to 
the determination of the amplitudes of the flow 
and temperature functions l{J (x) and e (x) from 
Eqs. (9) and (11) or (12), with the boundary condi­
tions (10). This is obviously an eigenvalue prob­
lem; a non-trivial solution for given values of 
parameters occurring in the equations will exist 
for only a few values of the complex number w. 
The stability problem reduces to the problem of 
finding these characteristic frequencies w. A 
neutral state, separating the regions of stability 
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and instability, will obviously occur when the im­
aginary part of the complex frequency reduces to 
zero. 

2. STABILITY INVESTIGATION 

For an approximate solution of the problem, 
we shall make use of the method of Galerkin. 

The unknown functions 1/J (x) and e (x), which 
are to be determined, are approximated by a lin­
ear combination of functions which satisfy the 
boundary conditions. The coefficients are then 
determined by Galerkin's method (see, for ex­
ample, Kantorovich and Krylov7). Inwhatfollows, 
we shall limit ourselves to the approximation 

~ (x) = a1~1 + a2~2 , 0 (x) = b101 + b202, (13) 

where the approximating functions 1/Jt, 1/!2• e1, 
and e2 must satisfy the boundary conditions (10). 
From the form of the equations for 1jJ and e it 
follows that these functions are not perfectly even 
functions, since the unperturbed profile v0 which 
enters the equations is an odd function of x. 
Therefore, in constructing the approximate solu­
tions (13), we shall choose 1/!1 and e1 to be even 
functions, and 1/!2 and e2 to be odd. The coeffi­
cients in the approximate solutions (13) are de­
termined from the following set of linear homo­
geneous equations: 

1 1 

~ L (ql, fi) ~' dx = 0, ~ M (~. fi) e, dx = 0, (i = I, 2). 
(14) -1 -1 

Here L is an operator which corresponds to the 
left-hand side of Eq. (11) in the transverse field 
case, and of Eq. (12) in the longitudinal field case. 
M is the operator corresponding to the left-hand 
side of Eq. (9). 

The condition for the existence of a non-trivial 
solution of (14) is that the determinant of the set 
of equations should equal zero. In order to ex­
press this condition more concisely, we shall first 
introduce the following notation: 

1 

An.= ~ (~F- 2k2~;- M2~; + k4~t) ~kdx. for H II x, 
-1 

1 

Atk = ~ wv - 2k2~; + k4~t + k2 M2~i) lJi~tdX for H II z, 
-1 

1 

Btk = - ~ (lJI;- k2ljit) lJikdx, c,. 
-1 

1 1 

~ (f~ljii - f otf; + k2f o~i) lJi~tdX, Dtk = ~ 6~ljikdx, 
-1 -1 

1 

a;~t=-+ ~(6;-k26;)6~tdx, 
- 1 

1 1 

1 

b;k = ~ 6;6kdx, 
-1 

en.= ~{06/i~tdX, dn.=- ~T~~i6kdx; fo= ~0 
-1 -1 

(15) 

Note that, by virtue of the symmetry properties 
of the trial functions 1/Ji and ei and the station­
ary profile f0, the integrals Aik• Bik• aik• bik• 
and dik are equal to zero for i I= k; and so are 
the integrals Cik• Dik• and Cik for i = k. 
Using these results and the notation of (15), the 
vanishing of the determinant of system (14) can be 
written in the form:. 

I Au+ iwB11 ikGC21 0 GD21 
ikGC12 A22 + iwB22 GD12 0 

1 ikd11 0 a11 + iwb11 ikGc21 
= 0. 

I 0 ikd22 ikGc12 a22 + iwb22 . (16) 

This equation determines the characteristic 
frequencies w of the perturbation. In order to 
find the conditions for a neutral perturbation state 
[i.e., Im ( w) = 0 ], the real and imaginary parts 
of determinant (16), with w taken to be real, must 
be equated separately to zero. In this way we ob­
tain two equations which we write provisionally in 
the form 

L40k4G4 + L01W1 + L22k2G2w~ 

+ L2ok2G2 + Lo2W1 + L 00 = 0, (17) 

(18) 

the coefficients representing terms involving the 
coefficients in determinant (16). 

For a perturbation with a given wave number, 
and for given values of the parameters M and P, 
Eqs. (17) and (18) make it possible to find the 
critical Grasshof number G and the real pertur­
bation frequency w [for, of course, only the real 
solutions of the set (17) - (18) have any physical 
meaning]. If we eliminate the real frequency w 
from Eqs. (17) and (18), we define a relation be­
tween G and k which specifies the neutral curve 
in the G-k plane. The minimum in the curve 
G = G ( k) defines the critical wave number km 
for a perturbation and the minimum critical Grass­
hof number Gm. 

In order to carry out all these calculations, it 
is necessary first to choose the trial functions in 
Eqs. (13). Let us take 1/!1 and 1/!2 to be polyno­
mials which vanish, together with their first de­
rivatives, at x = ± 1: 

(19) 
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In choosing the functions 01 and 02 we note 
that the temperature must satisfy the boundary 
condition 

fl" (- 1) = (;" ( 1) = 0. (20) 

as can be seen from (9) and the boundary condition 
(10). Therefore we choose 01 and 02 to be poly­
nomials which reduce to zero at x = ± 1, together 
with their second derivatives: 

!\ = (1- x2)(5- x2), 62 = x (1 -x2) (7- 3x2). (21) 

By using expressions (19) and (21) as the trial 
functions we can calculate from (15) the elements 
of the determinant (16), and find the coefficients in 
(17) and (18). In order to calculate the integrals 
Cik and Cik• which depend on the stationary ve­
locity profile v0, we must use expression (19) of 
Ref. 1 for the transverse field case and expression 
(21) of the same reference for the longitudinal field 
case, since the longitudinal field does not affect the 
profile. 

We shall consider the results of the stability 
investigations separately for the transverse and 
longitudinal field cases. 

1. Transverse Field Case 

The coefficients of determinant (16) could be 
found from their elements, but this is a rather 
cumbersome method of calculation; we shall not 
go into details of the derivation of these compli­
cated expressions here, since they are of no inter­
est in themselves. 

From (17) and (18) it is evident that these 

2o 10 20 JO 40 50 50 70 80 !JO !tJ(J 
14 

FIG. 1. Dependence of the critical Grasshof number on the 
:Iartmann number (for P = 0.02): Ia- transverse field (stand­
ing perturbations). Ib - transverse field (running perturba­
tions). II - longitudinal field. For comparison, the dashed 
line shows the dependence of the critical Grasshof number 
upon the field, for the onset of convection in a horizontal layer 
heated from below, in the presence of a transverse magnetic 
field.9 

equations would be satisfied if w = 0 and if the 
value of G were a root of the equation 

(22) 

If there is a real positive root of Eq. (22), it 
implies that for given parameters M and P and 
for a given wave number k, the motion is un­
stable for this value of G, because at the criti­
cal point there will be a corresponding perturba­
tion with the real part of the frequency w equal 
to zero, and consequently with a phase velocity 
of zero. (Perturbations of this type may be called 
"standing," to distinguish them from "running" 
perturbations, for which w I= 0.) The use of the 
approximation method clearly shows that the pos­
sibility of a standing perturbation, which is inter­
esting in itself, is connected with the antisymme­
try of the stationary velocity profile v0; if the 
profile is completely symmetric, the imaginary 
part of the determinant (16) does not contain a 
real frequency w as a factor, and no solution 
with w = 0 exists. By the same token, the ex­
istence of a standing perturbation in a flow where 
the mean velocity is different from zero (for ex­
ample, of the Poiseuille or Couette type) is hardly 
possible from the physical point of view, since the 
existence of the perturbation would destroy the 
flow pattern. 

Equation (22) has a real positive root for val­
ues of wave number in the interval 0 < k < k, 
where k is determined by the condition that the 
coefficient L40 should reduce to zero. The val­
ues k = 0 and k = k give the asymptotic neutral 
curves G = G ( k). Between these points the curve 
has a minimum at k = km. The critical wave 
number and the value of the minimum critical 
Grasshof number Gm have been calculated for 
P = 0.02 and for different values of the param­
eter M ( i.e., as a function of the field strength) . 
In the absence of a field ( M = 0) the critical 
Grasshof number is equal to Gm = 405. This in­
dicates a relatively low stability of the motion; 
for comparison, we may note that the critical 
Grasshof number corresponding to the onset of 
convection in a plane horizontal layer heated from 
below8 is Gm = 5340 for P = 0.02. The pres­
ence of a field leads to a considerable increase in 
stability; as the parameter M increases the crit­
ical number Gm rises rapidly (see the table and 
Curve Ia in Fig. 1). For example, at M = 10 the 
critical number Gm is more than 100 times 
higher than its value in the absence of a field. 

The critical wave number km decreases mon­
otonically with increase in M (Curve Ia in Fig. 
2), i.e., the critical wavelength of these (standing) 
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perturbations increases with increasing magnetic 
field. 

In addition to the standing perturbation type of 
instability, described above, in the presence of a 
transverse magnetic field the stationary motion 
also exhibits instability caused by running pertur­
bations. This type of instability takes place when 
the field is sufficiently high, and corresponds to a 
solution of (17) and (18) with w ~ 0. To find the 
neutral curve G (k) for the running perturbations, 
w must be eliminated from (17) and (18) after di­
viding by w. If desired, it is also possible to find 
from (17) and (18) the real frequency, and hence 
the phase velocity, of the running perturbations. 
Since only the even powers of w appear in the 
equations, the perturbations travel both ways along 
the z axis. The critical Grasshof number Gm 
is plotted as a function of M in Fig. 1, Curve lb. 
It can be seen that for M > 42 a breakdown in the 
stationary flow can arise as the result of either 
standing or running perturbations, but that the 
critical number Gm for running perturbations is 
very much lower than the corresponding critical 
number for standing perturbations, i.e., the flow 
is very much less stable toward running perturba­
tions. Nevertheless, even at very high fields there 
is always a possibility that the instability may set 
in as a standing perturbation. To make this happen, 
some means would have to be taken to prevent the 
formation of running perturbations; for instance, 
running perturbations obviously cannot exist in a 
channel with very small vertical dimensions. 

Figure 2 (Curve Ib) shows the dependence of 
the critical wave number km on the field. It is 
evident that for M > 42 the critical wave number 
for running perturbations is greater than the crit­
ical wave number for standing perturbations. This 
is physically reasonable, since for large trans­
verse fields the running perturbations lead to 
breakdown at lower G numbers than the standing 
ones; at high transverse fields the formation of a 
short wavelength perturbation, covering a rela­
tively large distance in the direction of the trans­
verse field, is energetically favored, since in this 
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FIG. 2. Dependence of the critical wave number on the 
Hartmann number (for P = 0.02): Ia - transverse field (stand­
ing perturbations). lb - transverse field (running perturbations). 
II - longitudinal field. 

case the Joule dissipation will be less than for a 
long wavelength perturbation. The same reason­
ing explains why the critical wave number km for 
running perturbations increases with an increase 
in the applied field. 

2. Longitudinal Field Case 

In the case of a longitudinal field, the only pos­
sible type of instability is a standing perturbation 
with w = 0. If we assume that w ~ 0, then Eqs. 
(17) and (18) give complex roots G when w is 
eliminated, indicating that with respect to running 
waves, the system is always stable. The critical 
Grasshof number Gm for standing perturbations 
is shown as a function of the Hartmann number M 
in Fig. 1, Curve II. It will be seen that the criti­
cal number Gm increases much more slowlywith 
the field than it does in the transverse field case. 
At large fields, the critical number Gm increases 
in direct proportion to the field, in accordance with 
the asymptotic formula 

G", =107M. (23) 

A longitudinal field is much less stabilizing 
than a transverse field. This can be explained by 
the fact that a longitudinal field merely hinders the 
development of perturbations, while the transverse 
field, in addition, greatly slows down the stationary 
flow. The effect of this second factor on the stabil­
ity is much greater - so much so that Lock, 4 in his 

M 

41.3 0 co 
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80 1.6 3.18·107 

90 1.75 3.80·1()7 
100 1.9 4.6·107 
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study of the stability of Poiseuille flow in a trans­
verse field, did not even consider the effect which 
the field would have on the perturbations. 

In the longitudinal field case the critical wave 
number km decreases monotonically as the field 
increases (Curve II of Fig. 2 ); this is a natural 
result, since in distinction to the transverse field 
case, it is the long wavelength perturbations which 
are energetically favored in a longitudinal field. 

In conclusion, we note that the quantitative re­
sults which we have obtained could be made more 
accurate by using better approximations. This 
could be done in two way: either by an increase in 
the number of trial functions in (13), or by choos­
ing the trial functions in a different way. It seems 
to us that the second method is more comprehen­
sive, from the following considerations. It is 
known that, at high fields in stationary flows, a 
sort of boundary layer is formed; hence it may be 
expected that some such layer would also accom­
pany a perturbation which is formed in a high field. 
However, the polynomial trial functions (19) and 
(21) which we have chosen make no provision for 
this kind of structural singularity in the perturba­
tions (if such a singularity should exist). It should 

be noted that both of the methods for improving the 
accuracy of the results would greatly complicate 
the numerical computations. 
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