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are the thermal conductivity and Thomson coeffi
cients. 

It was shown in Ref. 13 that if the collision op
erator was a <5-function in the energy, then for 
each of the components of the tensors of conduc
tivity and thermal conductivity, the Wiedmann
Franz law is satisfied. The calculations carried 
out in Ref. 13 are not connected with the concrete 
form of aik' llik' Kik' and therefore we can 
make direct use of the results of Ref. 13 and write 
down at once: 

Here to = t ( 0) is the chemical potential of the 
electron gas at absolute zero (the limiting Fermi 
energy), k is Boltzmann's constant. Thus, the 
tensors Kik and llik are expressed in terms of 
the tensor aik studied above. 

In conclusion, I take this opportunity to thank 
M. Ia. Azbel', E. S. Borovik, B. G. Lazarev, and 
I. M. Lifshitz for useful discussions and criticism 
of the results of the research. 
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A study is made of the stationary convection of an electrically conducting liquid in the space 
between two parallel plates, heated to different temperatures, in the presence of a magnetic 
field. The distribution of velocity, temperature, and induced fields are found, and the con
vective heat flow is calculated. 

IT is well known that currents are induced in a 
conducting liquid which moves in a magnetic field. 
The interaction of these currents with the mag-

netic field is the cause of the various magneto
hydrodynamic effects which have been intensively 
studied in recent years. The magnetic field will, 
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of course, also have an effect on the convective 
flow of an electrically conducting liquid. As an 
example, we may cite the increased stability of 
the equilibrium of an electrically conducting liq
uid heated from below when a magnetic field is 
applied.1•2 In the present paper we consider the 
stationary convective motion of a conducting liq
uid located in a magnetic field, in the space be
tween two parallel plates heated to different tern
peratures. 

1. The current flowing in a medium moving 
with velocity v is equal to 

j = :l ( E + ~v X s\ ' 
\ c ') (1) 

where a is the electrical conductivity, and E 
and B are the field strengths. The nature of the 
fields and material motions are to be determined 
from the equations of motion for the medium (in 
our case these are the equations of convection) 
and from Maxwell's equations for the fields in the 
medium: 

av -l-v·'Vv=-~'Vp+vV2 v+gBrT+~jxB; (2) at ' p ' pc 

ar;at+vVT=xv•T; (3) 
div v = 0; (4) 

curl H = ~ j, div B = 0; 
c 

CurlE = - ~as d. D 4 c at ' IV = 1tPe· 

Here p is the convective pressure, T is the 
temperature, p is the density of the liquid, g 

(5) 

(6) 

is the acceleration of gravity, v is the kinematic 
viscosity, {:3 is the thermal diffusivity, x is the 
thermal conductivity, 'Y is a unit vector directed 
vertically upward, and Pe is the space charge 
density. In accordance with the usual assumptions, 
we have neglected displacement currents in the 
equation for curl H, and the viscous and Joule 
dissipations in the heat transfer equation. 

By eliminating the electric field strength and 
current density from Maxwell's equations and Eq. 
(1), we obtain 

()Hjot+curl (Hxv)=,\V2 H, /,=c 2 j4,.-;!La. (7) 

Substituting the expression ( c/47r) curl H for 
the current density, we can write two of the terms 
in the equation of motion (2) in the form 

1 1 . 1 (' {lff0 \ !L -- \l p + -· J x 8= -- V p + - I + - H · \l H; 
p pc p 81t J 4n:p 

Here the gradient symbol operates on the total 
pressure ( convective plus magnetic). 

We now introduce dimensionless variables. 
Denote by 2d the distance between the parallel 

plates, by 2® the constant temperature differ
ence between them, and take d and ® as the 
new units of length and temperature. As the unit 
of field strength we choose the value of the con
stant, uniform, external field H0• The units of 
time, velocity, and pressure are chosen as d2/v, 
v/d, and pv2/d2• In terms of these dimensionless 
variables, the equations take the form 

av ( M 2 H 2 \ ~- + v. v v = - v p + --~ -- ! 
(}/ pm 2) 

M• . + V2 v + GrT + P H· 'V H; 
m 

ar "T 1 v• r· ar+vv =-p ' 

dH 1 
liT + curl (H X v) = p v· H; 

rn 

div v = 0, div H = 0. 

(8) 

(9) 

(10) 

(11) 

Four dimensionless parameters have been in
troduced into these equations: G = g{:3®d3 I v2, the 
Grasshof number; P = v/x, the Prandtl number; 
M = ( B0d/ c) ...ra{ri , the Hartmann number (here 
B0 = J.LH0, and TJ = pv is the absolute viscosity); 
and Pm = v/A.. 

The boundary conditions for Eqs. (8) to (11) will 
be established later. 

2. Let us consider stationary convection in the 
space between vertical parallel plates, when an 
external magnetic field is applied perpendicular to 
the plates. We shall locate the origin of coordi
nates midway between the plates. The x axis is 
directed normal to the plates, in the direction of 
the colder plate; the z axis is vertically upward; 
and the y axis is perpendicular to the x and z 
axes (see Fig. 1). 

If the dimensions of the plates are sufficiently 
large compared to the distance between them, it 
is possible to find an exact solution of Eqs. (8) to 
(11) which will describe the stationary motion at 
all points except near the edges of the plates. For 
this type of motion, (a) the velocity v is every
where parallel to the z axis, (b) the temperature 
T depends only on x, (c) the field vector H is 
alw.ays in the xz plane, i.e., Hy = 0, (d) all quan
tities are independent of y (i.e., the problem is 
two-dimensional), and (e) all quantities except the 
pressure are independent of z. 

Let us now find the profiles of temperature, 
velocity, and field strength for this system. From 
the assumptions which have been made as to 
the type of motion we will have, instead of Eq. (9), 
d2T / dx2 = 0, i.e., the temperature profile is lin
ear. If we take the zero of our temperature scale 
to be the value calculated for x = 0, then the 
boundary conditions for the temperature equation 
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will be T (- 1) = 1; T ( 1) = - 1; and accordingly, 

T =-X. (12) 

We now find the velocities and field strengths. 
From (11) it follows that Vz = v (x) and dHx/dx 
= 0; i.e., the component of magnetic field normal 
to the plates is a constant, and is obviously equal 
to the external field. Let us assume for the sake 
of definiteness that the direction of the external 
field coincides with the positive sense of the x 
axis. Recalling our choice of unit field strength, 
we have 

(13) 

The x component of Eq. (8) is 

(14) 

i.e., the total pressure depends only upon z. Let 
us now consider the z component of Eq. (8) 

d ( M2 H2 ) " M2 ' 
Tz p + P m 2 = v + GT + p m Hz 

(the primes represent differentiation with respect 
to x). Since the right-hand side is a function of 
x only, and the left-hand side is a function only of 
z, we may separate the variables, denoting the 
separation constant by C, and writing 

v" + GT + (M 2/Pm) H~ =C. (15) 

The z component of Eq. (10) gives another equa
tion connecting v and Hz: 

H~/ Pm = -v', (16) 

whence 

(17) 

By substituting (12) and (17) into (15) we obtain 
an equation for v: 

v"-M2v=G(x+A), A=(C-C1M 2)/G. (18) 

The solution of (18) will contain two constants of 
integration which must be determined from the 
boundary conditions v ( -1) = v ( 1) = 0. In order 
to determine the constant A we must know the 
flow of liquid through a cross-section. If the 
channel is closed at the top and bottom, then the 
liquid will circulate, rising near the warm plate 
and sinking near the cold one. In this case, ob
viously 

1 

~ vdx = 0. 
-1 

If A and the constants of integration are deter
mined for this case, we obtain the velocity profile 

G (sinhMx j 
V = J\.12 \sinhM -XJ 

(19) 

To find the induced field Hz we substitute v 
from (19) into (16), integrate twice, and determine 
the constants of integration from the boundary con
ditions 

Hz(-!)= Hz(!)= 0. 

As a result we obtain 

GP m (x2 -1 cosh Mx- cosh M\. (20) 
Hz= M2 1 -2-- M sinh M ) • 

\ . 

(Had the external field been in the negative x di
rection, Hz would have been of the opposite sign.) 

Equations (12), (19), and (20) provide the solu
tion of the given problem. 

r v/t: 
Q.Q6 

aot,. 

' 

-au5 

Fig. 1. 

S. Figure 1 shows the velocity profiles for M 
= 0, 5, and 10. As an example, we may note that 
for mercury a= 0.945 x 1016 sec-1 and TJ = 1.55 
x 10-2 poise; consequently, M = 0.026 B0d. There
fore if d = 1 em, a value of M = 10 corresponds 
to a field Bo of the order of 400 gauss. In the ab
sence of a field ( M = 0), Eq. (19) gives the veloc
ity profile 

v = Gx(x2 -!)j6. (21) 

As the field increases, it is evident from Fig. 1 
that the flow rapidly decreases. In addition, an 
unusual boundary layer appears in the flow pat
tern; a thin layer develops near the walls in which 
the velocity gradient is large. (The occurrence 
of a boundary layer in the flow of liquids in a mag
netic field was observed by Hartmann3 while he 
was studying the effect of a field on Poiseuille 
flow.) If the thickness of the boundary layer o 
is defined as the distance from the wall to the 
point where the velocity is a maximum, then for 
large values of the Hartmann number M (in prac-
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Fig. 2. 

tice, when M > 5 ), we have from- Eq. (19) 

a = (In M) 1M. (22) 

The distribution of induced magnetic field over 
the cross-section is shown in Fig. 2. It must be 
noted that Hz in Eq. (20) and in Fig. 2 is the ratio 
of the induced (longitudinal) to the external (trans
verse) field. As M - 0 this ratio approaches a 
limiting value; for large values of the Hartmann 
number, Hz as determined from Eq. (20) dimin
ishes in proportion to M-2• Thus, for small ex
ternal fields Ho the induced field increases pro
portionally to H0, while for large H0 it decreases 
as 1/H0• A maximum is attained at a field corre
sponding to M = 3. Note also that for moderate 
values of the Grasshof number the induced field is 
very much smaller than the external field, since 
the parameter Pm which enters into formula (20) 
has the value 10-7 for mercury, for example. 

The induced field is equal to j = ( c/47r) curl H, 
and therefore the only non-zero component of the 
current density is jy, which is proportional to 
dHz/dx. The current density therefore varies in 
the same way as the velocity does over the cross-

section. 
We can also find the upward flow of heat due to 

convection, which is equal to 

t1 

QM = Cpp ~ vTdx, 
-d 

(23) 

per unit of length in the direction of the y axis, 
where cp is the specific heat of the liquid, and 
v and T are the dimensional velocity and tem
perature. Evaluation of this formula gives 

QM _ ~ (J-. _ cothM + _!__ 1 (24) 
Q 0 - M 2 3 M M 2 1 ' 

where Q0 is the flow in the absence of magnetic 
field and is equal to 

(25) 

The ratio QM/Q0 decreases monotonically from 
1 to 0 as the number M increase·s. 

The solution derived above describes the flow 
in a vertical channel in the presence of a perpen
dicular external field. For channels inclined at an 
angle a to the vertical, it can easily be verified 
that the solution is the same as before, with G x 
cos a substituted for G. If the field has any arbi
trary orientation with respect to the channel, its 
longitudinal components have no effect on the de
tailed motions which have been discussed. 

ts. Chandrasekhar, Phil. Mag. 43, 501 (1952), 
45, 1177 (1954). 

2 E. M. Zhukovitskii, «<>H3HKa MeTaJIJIOB H 

MeTaJIJioBe,~~;eHHe (Physics of Metals and Metal Re
search) ( in press). 

3 J. Hartmann, Kgl. Danske Vidensk., Selskab. 
Math.-fys. Medd. 15, 6 (1937). 
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up the crystals as infinitely long unidimensional or 
two-dimensional atom complexes, bound together 
by "small" forces of one nature, whereas in the 
complex itself the atoms are bound by "big" forces 
of another nature. 

6. The difference between the typical molecular 
crystals (e.g., the CH4 or C6H6 crystals) and the 
heteropolar molecular crystals (such as the NaCl, 
HgCl2 or PbS crystals) lies: (1) in the degree of 
molecularity {3; (2) in the nature of the forces in 
the molecules; (3) in the nature of intermolecular 

forces. The quantity {3 is defined as the ratio of 
the intramolecular energy ua ~ D ( D is the en
ergy of dissociation of the diatomic molecule into 
ions) to the intermolecular energy ue per bond. 
For the substances for which {3 is given below, it 
is possible to take ue ~ 2S/l. Example: 
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{3 = 300 ( CH4 ), 200 ( HCl), 22 ( HgCl2 ), 10 ( NaCl) 
taking l = 12 in all four cases. 
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Reads 

!:l.y = 2.87 x 10-3 em 

!::J.J. ~ = 7.2 x 10-5 radians 

2-(d, 3n); and of the I~7 cross 
section, 3-(d, 2n); 4-(d, 3n) 

p, yp, h, 1/p 

For y = 5/3, /J. has • o o 

Should Read 

W = y2 a~4 sin 2q>/2p (a11 a 44 

- a}4 sin2 3q>) 

The coefficient k:! equals 
Oo 185 x 10-3 em -i 0 

!:l.y = 3.18 x 10-3 em 

!::J.J.~ = 5.9 x 10-5 radians 

2-(d, 3n) on I~ 7 and 3-(d, 3n); 
4-(d, 3n) on Bi~g9 

PY2• 'YPY2• hy2, Y2/p 

Here /J. has o o o 
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