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The electron distribution function, the electric conductivity, the thermal conductivity, and 
the Thomson coefficients have been determined for a metallic film located in a constant 
magnetic field directed at an arbitrary angle with respect to the surface of the film. No 
special assumptions are made regarding the electron dispersion law. The region of strong 
magnetic fields is studied in detail. Comparison of theory with experiment shows excellent 
agreement. 

1. INTRODUCTION 

THE study of the effect of shape and dimensions 
of a sample on the electric conductivity, thermal 
conductivity, and other kinetic coefficients of 
metals permits us to obtain data on the magnitude 
of the mean free path, the character of the elec­
tron energy spectrum, etc. 

In Refs. 1- 6, the conductivity of thin metallic 
films and wires was calculated for the absence of 
a magnetic field. Englman and Sondheimer3 

showed that the conductivity of an anisotropic 
monocrystalline film, whose thickness was much 
less than the mean free path length, depends not 
only on the angles between the current direction 
and the crystallographic axes, but also on the or­
ientation of the latter with respect to the surface 
of the film. In Refs. 4 and 5, the conductivity of 
wires of circular and rectangular cross section 
was computed. 

The conductivity of films and wires in a mag­
netic field was determined in Refs. 5-8 for var­
ious orientations of a constant magnetic field 
(parallel to the plane of the film and to the axis 
of the wire) relative to the current. 

In the work of MacDonald and Sarginson, 5 the 
distribution function and the conductivity of the 
film in crossed electric and magnetic fields were 
found improperly (which is also noted in Ref. 7). 
AzbeY 7 determined the conductivity of a film in 
a longitudinal magnetic field, while Sondheimer7a 
has shown that the resistance of a thin film in a 
perpendicular magnetic field oscillates on change 
in the field. In the researches of Chambers 7 and 
Konigsberg" on the determination of the conduc­
tivity of films and wires in a magnetic field, sim-
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ple kinetic considerations were employed. These 
were based on a study of the trajectory of an iso­
lated electron which enabled one to avoid the cum­
bersome solution of the kinetic equation (see Ref. 
7). 

In all these researches, with the exception of 
the work of Kaganov and AzbeY, 2 the calculations 
were carried out under the assumption that the 
electrons in the metal were free, that is, a square 
law of dispersion was assumed (sometimes with 
anisotropic effective masses). Moreover, the ani­
sotropy of the time of free flight was never taken 
into account. Also, the kinetic coefficients in thin 
films depend on the form of the dispersion law 
and the anisotropy of the collision integral. This 
circumstance can, in principle, be used for the 
study of the form of the limiting Fermi surface 
and the character of the electron-lattice interac­
tion. 

Insofar as the thermomagnetic effects in films 
are concerned, they have remained virtually un­
studied. 

In connection with experimental researches 
(for example, Refs. 5, 10), it must be noted that 
in almost all of them, the samples were polycrys­
talline. So far as we know, only in the research 
of Borovik and Lazarev, 9 where the effect of the 
shape of the specimen on the electric conductivity 
of bismuth was studied, were the specimens mono­
crystalline. In that case a plate of thickness f 
"' 10-2 em was used. The plate was connected 
with a massive single crystal; the orientation of 
the crystallographic axes in the film and in the 
large sample were the same. The measurements 
were carried out simultaneously on the film and 
on the large monocrystal in order to eliminate the 
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effect of the natural anisotropy of Bi and to isolate 
the effect of shape in pure form. The study of the 
rotational diagram (the dependence of the resist­
ance of the film on the angle between the magnetic 
field and the surface of the film) allowed one to 
determine the order of magnitude of the free path 
length. The results of these experiments are 
completely explained by the theory developed 
below. · 

The purpose of the present paper was the cal­
culation of the kinetic coefficients of the metallic 
film (located in a constant magnetic field) for an 
arbitrary electron dispersion law. The possibil­
ity of the introduction of a relaxation time t 0 ( p) 
was assumed, where p is the quasi-momentum 
of the electron. 

2. STATEMENT OF THE PROBLEM AND SO­
LUTION OF THE KINETIC EQUATION 

Let us first consider the electric conductivity 
of a layer of metal of thickness d ( 0 ~ z ~ d, 
the z axis being parallel to the inwardly drawn 
normal to the surface z = 0). located in a constant 
magnetic field H. We choose the x axis alongthe 
projection of H on the plane of the film. 

We shall begin with the linearized kinetic equa­
tion11 for the contribution of f to the equilibrium 
Fermi distribution function 

vzat I az +nat I a-r. + f I to (p) = eEv at o I as, 
( E- l;\ ··-· r (E- l;', ]-1 fo \ ---;y-- I-- exp 1 ---;y--; + 1 
' j ' \ ) 

(2.1) 

Here, we choose as variables the coordinate z, 
the energy of the electrons E, the conserved com­
ponent of the quasi-momentum PH = pH/H and the 
dimensionless period of the electron in its orbit 
T = Qt. The "cyclotron" frequency Q = eH/mc; 
-e =charge, m = ( 1/27r)8S ( E, PH)/8E = effec­
tive mass, v = V E(p) =velocity, t(T) = chem­
ical potential of tge electrons; S ( E, PH) = cross 
sectional area of the surface, E ( p) = E on the 
surface PH = const; t = actual period of electron 
in orbit; E ( z) =direction of the electric field 
inside the metal. It follows from the unperturbed 
equation of motion of the electron in a magnetic 
field dp/dt =- (e/c) [v x H] that the Jacobian of 
the transformation from the variables Px• Py• Pz 
to the variables E, T, PH is equal to m. 

The boundary conditions for Eqs, (2.1) are the 
periodicity of f ( z, E, T, PH) in the variable T 

with period 27T and the condition of diffuse reflec­
tion of the electrons from the boundaries of the 
film: 

f (0; v) \vz>O = 0; f (d; v) \vz<O = 0. (2.2) 

Knowledge of the distribution function f ( z; E, 
T, PH) permits us to compute the current density 
j(z) 

j (z) = - (2e I h3) ~ vf (dp), 

whence we find 

d 

] = ~ ~j(z) dz 
0 

(2.3) 

and the tensor of effective conductivity aik• In 
this case, it must be taken into consideration that 
the components of the electric field Ex and Ey 
are constant along the film, while the Hall field 
E z depends on z. This dependence ought to be 
obtained from the equation jz = 0, which corre­
sponds to the evident fact that there is an "open 
circuit" along the z axis. However, in what fol­
lows we shall neglect the dependence of the Hall 
field Ez on the coordinate z, since we shall be 
interested in two limiting cases: strong ( y « 1) 
and a weak ( y » 1) magnetic field ( y = 1/m0) 

for d ,..., l. = vt0• In the strong magnetic field ( y 
« 1), E z changes appreciably only close to the 
boundaries of the film in a narrow range of z, 
d - z ,..., r « l. ,..., d* (the contribution from which 
we can neglect), remaining practically constant 
over the thickness of the film. In the weak mag­
netic field ( y » 1), because of the small value 
of Ez, the Hall field can simply be neglected in 
the computation of the conductivity. 

Starting out from physical considerations sim­
ilar to those with the help of which Chambers6 de­
rived the formula for the conductivity of films and 
wires, it is not difficult to write down at once the 
solution of the kinetic equation (2.1), which satis­
fies the boundary condition (2.2): 

e 8{0 \: ( 1 ~' d ) f (z; -r.; s, PH) = O ~ .\ V (-r.l).E Z + Q ~ Vz 't2 
I. (z; ~) ~ 

(2.4) 

where A ( z; T) denotes the closet preceding T 

root of one of the following equations 

Vz d-:2 = 0, d; ), (z; -r.) < 't. (2.5) 

From the periodicity requirement of f in T with 
period 27T, it follows that A ( z; T + 27r) =A ( z, T) 
+ 27T. If Eqs. (2 .5) do not have a solution (massive 

* r = pc/eH is the radius of the electron orbit in the mag­
netic field, y = r ;t. 
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metal), then we must set A. ( z; T) equal to - oo. 

We can show by a direct demonstration that (2.4) 
satisfies all the required conditions. 

In the case in which the magnetic field is paral­
lel to the surface of the film, the distribution func­
tion f ( z; T) is discontinuous, where the discon­
tinuity occurs along the characteristic of Eq. (2.1), 
i.e., along the line 

'I' 

O~z=&~vzd-r2 +const~d. (2.6) 

The presence of the discontinuity corresponds 
to the fact that the electrons (with given T) reach­
ing one of the surfaces of the film cannot penetrate 
directly (i.e., without collisions inside the metal) 
to a depth greater than 2r ( T). * At the same time, 
the electrons (with the same value of T) capable 
of penetrating to depths greater than 2r ( T) do 
not collide directly with the boundaries of the film. 
Therefore, all the electrons are divided in ana­
tural way into two groups: electrons which undergo 
collisions with the boundaries, and electrons which 
do not reach the boundaries (without collisions in­
side the film). The distribution function for these 
two groups of electrons are essentially different, 
which also corresponds to the presence of a dis­
continuity. 

It is not difficult to show that the solution of 
Eq. (2.1) with the boundary conditions (2.2) is 
unique in the class of functions which achieve dis­
continuities along the characteristic (2.6). For 
this purpose it suffices to note that Eq. (2 .1) with 
the right hand side equal to zero has its own gen­
eral solution 

(<I> is an arbitrary function which can have a dis­
continuity), which, however, does not satisfy the 
requirement of periodicity in T and consequently 
is identically equal to zero. Thus, for finding the 
jump in the function f at the discontinuity, no ad­
ditional conditions are required. 

We can obtain (2.4) directly from (2.1). For 
this purpose, we continue the function f ( z; T) by 
setting it equal to zero for z < 0 and z > d, and 
apply a Laplace transformation: 

d 

F (p; -r) = ~ f (z; -;) e-P' dz; 
0 

*For simplicity in the given case, we assume that the 
thickness of the film d is greater than the diameter of the 
maximum orbit max 2r(r). 

d d 
• • e at 

G (p; -r) = ~ g (z; -r) e-PZ dz = ~ n aeo vE (z) e-PZ dz, 
0 0 

then 

ap ( pv \ v 
a--:r+\Y+ !Jz)F=G(p;-r)+ ~ [f(O;-r)-f(d;-:)e-Pd]. 

The periodic integral of this equation is equal to 

{ v (-r,) } 
X G (p; "r) + ~ [f (0; "r) - f (d; "r) e-Pd] , 

whence 

s+ico 

f (z; -r) 2~i ~ F (p; -r) ePz dp 
s-ico 

-00 

(2. 7) 

-f(d;-r1)B(z-d+ ~ ~·vzd-r2)]}. 
'I' 

It follows from the boundary conditions (2 .2) 
that 

f (0; -r) = - sgn Vzf (0; -:); f (d; -r) = sgn Vzf (d; -r); 

sgnx= { l(x>O) (2.8) 
-1 (x<O). 

Introducing 

T 

u (z; -r) = exp (~ y d-r2) f (z; -;) 
0 

and making use of (2.8), we get 

u (z; -:) + ~ d-r1u (z + & ~' Vz d-r 2 ; "r) 
-00 T 

~ exp(~'yd-r2)g(z+&~'vzd-r2;-rr)d-r1 • 
-~ 0 T 

Because of the presence of the o-function, the left 
side of this equation reduces to 

As(Z; T) 

~ Vz d-r2 ; f,s (z; -;)) 
T 
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't' 'ft T1 

= ~ d't1 exp(~yd't2)g(z+A ~ v,d't2; 'tr)· (2.9) 
-~ 0 ~ 

The summation in (2.9) extends over all the roots 
As ( z; T) of the equation 

J.8 (z; '<) 

z+& ~ v,d't2=0, d; 't~"-1 >1-2 > ... ~-oo. 
.. 

The solution of the functional equation (2.9), as is 
easy to verify, is 

't' 't't 't't 

u(z; 't) = ~ d't1 exp(~ yd't2)g (z +A~ Vz d't2; 'tr), 
J.,(z; -r) o -r 

which gives Eq. (2 .4) for f ( z; T). In this case, we 
need to take into account that, by definition, 

>-s 

"-1(z+A ~ Vzd't2; '-sJ='-s+I(z; 't). 
.. 

3. GENERAL FORMULA FOR THE EFFECTIVE 
CONDUCTnnTYTENSOR 

To find the effective conductivity tensor, we 
must compute the mean value of the distribution 
function in terms of which the average current is 
expressed [see Eq. (2.3) ]. From (2.1), we have 

a{ (-r) + -f e a to E- vz [f (d· 't) _ f (O· 't)] (3 .1) ---a:r- r=n--a;-v -IJ.d ' ' ' 

d 

t ('t) = { ~ t (z; 't) dz; y = 1 1 nto. 
0 

Making use of (2 .8), we find 

f (-c)= ~ d't1 exp (~' yd't2) {~ ~: ·V ('tr) E 
-co '" 

(3.2) 

After substitution for f ( 0; 7") and f ( d; 7") from . 
(2.4), we get 

.. ... 
f('t)=-fl~: ~ d'trexp(~yd't2){v('tr)E 

-co '< 

where s(T) = At(d- 0; T) for Vz(T) > 0, s(T) 
=]\t(+O;T) for Vz(T) <0, where s(T) <T. It 
is easy to see that s ( 7") coincides with the near­
est preceding 7" root of one of the equations 

Taking E ( z) to be constant ( see Sec. 2) and sub­
stituting (3 .3) in (2 .3), we get the final expression 
for the effective conductivity tensor in the very 
general form 

an,= a~Y{- 8an, (j; = a;hEh); 
co 

a<o) = -- -ds --dpH 2e2 ~ ato ~ m 
ill. hs af: n , 

0 

2~ 't' 't't 

x ~ V;{'t)d't ~ exp (~ yd't2)v~t('t1)d-:J; (3.4) 
0 -oo T 

co • .. 

8an, =- ~=~ ~ ~: ds· ~ ~2 dpy ~ V;('t) d't ~ \ Vz('tl) jd-:1 
0 0 -co 

X ~ exp (ryd't2)v1t('t')d•t'. 
S(T,) 't" 

In the case of several bands in (3.4), it is neces­
sary to sum the corresponding expressions over 
all bands. 

The tensor u~_} coincides with the conductiv-

ity tensor for the massive metal; the presence of 
<5uik is brought about by the finite thickness of the 
film. In the limiting case of zero magnetic field, 
Eqs. (3.4) reduce to the corresponding equations 
of the researches of Fuchs 1 and Kaganov and 
Azbel' •2 If the magnetic field is parallel to the 
surface of the film, (3.4) coincides with the re­
sults of Azbel'7 and Konigsberg.8 

It should be noted that the Onsager relations 
uik (H) = uki (-H) for the effective conductivity 
tensor of the film are, generally speaking, violated 

[it appears that u fk> (H) = u~~) (-H)}. This is not 

unexpected, since in the case of the film, the con­
ductivity tensor, strictly speaking, is an operator, 
because of the dependence of the electric field on 
the coordinate z. However, in several cases (for 
example, a strong magnetic field parallel to the 
surface) we can neglect the nondiagonal compo­
nents of <5uik in comparison with the correspond­
ing components in ui~), and then the Onsager re­

lations will be satisfied asymptotically. 

4. INVESTIGATION OF LIMITING CASES 

Having in mind the comparison of the results 
of the present theory with the experiments of 
Borovik and Lazarev, 9 we consider in this sec­
tion the region of strong magnetic fields ( 'Y « 1) 
in which we consider that d '"" R.. Just this case 
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is studied in detail in Ref. 9. With the aim of sim­
plifying the final formulas, we shall assume the 
dispersion law to be isotropic and quadratic, and 
the relaxation time t 0 to be constant and not to 
depend on p (the residual resistance). We can 
show that the qualitative results (in particular, 
the dependence of H) do not depend on the form 
of the dispersion law and the collision integral. 

The asymptoticity of the tensor ai~) in strong 

fields was studied in detail by Lifshitz, AzbeP, 
and Kaganov11 for an arbitrary form of dispersion 
law E (p) and collision integral. It was shown in 
their work that for closed Fermi surfaces, the 
dispersion law and the collision integral have no 

effect on the dependence of ai~) on strong mag­
netic fields. 

The basic difficulty in the calculation of oaik 
is contained in the determination of the function 
s ( T). Unfortunately, we did not succeed in find­
ing a suitable analytic expression for s ( T) for 
arbitrary angle of inclination of H to the surface 
of the film. Simple formulas for s ( T) were ob­
tained in a constant magnetic field parallel to and 
perpendicular to the surface of the film. 

In the perpendicular field, v z does not depend 
on T and 

(4.1) 

In the parallel field two cases are distinguished: 
a) d > 2r ( r = mvc/ eH, sufficiently strong mag­
netic field). In this case, the electrons which are 
colliding with one of the boundaries of the film can­
not directly reach the other boundary (i.e., without 
collisions inside the film). b) d = 2r (weak mag­
netic field or sufficiently thin film). The calcula­
tions are especially simple in case a) and are con­
siderably complicated in case b). 

For d = 2r, all the components of the tensor 
oaik are continuous. Finite jumps have a third 
derivative osxx with respect to H, second de­
rivatives oaxy, oayx, oaxz and first derivatives 
of all the remaining components of oaik· 

In the perpendicular field, the nonzero compo­
nents of the effective conductivity tensor are equal 
to 

r:;xx _ r:;yy _ ___I_ ( 1 _~(y2 -1)A+2yB[. 
~ - Go - 1 + y2 l 8k 1 + y2 J , 

<>zz-]- ~C· 
cr0 - 4k ' 

(4.2) 

"xv r:;yx •.• ( :1 ~· 2 A 1 2 B l -· = -- = ---1 - 0 t1-"k1--+--·d y + ( -y) ]J, 
<>o <>o + '(" o ·:· ' 

where n = 87rP3 /3h3 is the density of electrons, 

a0 =ne2t0 lm, y=rll=llflt0 ; rx=dlr; k=dll; 

A+ iB = I - 4£3 (k + irx) + 4£5 (k + irx); C = 1 - 4£5 (k); 

00 

En(X)= ~ ~-ne-x~d~. 
l 

Equations (4.2) are accurate (and coincide with 
the corresponding equations in Ref. 7a), as far as 
the equation jz = 0 is satisfied by E z• which is 
equal to zero, and we can introduce the tensor 
(and not the operator! ) of the conductivity. It is 
obvious that in this case the Onsager relations are 
satisfied. 

For 'Y « 1 and k "' 1, Eqs. (4.2) yield 

O"xxluo=O'yyloo=y2 (1 +318k); O'zzl<>0 = I-3CI4k; 

O'xyl <>o =- O'yxl O'o = -y(l -y2 + 3y2 I 4k). (4.3) 

a) In a sufficiently strong parallel field ( d > 2r ), 
the function s ( T) is a solution of the equation 

(the equation 

has no solution). 
Setting 

v = p 1m= v (cos.&, sin .&siw:, 

sin.&cos-r), -<=I 2 <::--= <:: 3<. I 2, 

we find 

s('t)=-or---: for- -;:12<:-c<:nl2, s(-r) 

The nonzero components of the tensor aik have 
the form 

axx 3 ( 1 1 + e-Z1t/y/). 
G;;' = 1 - 8k I - 2 1 + 4:2 ' 

3 (6- 5y2 + 4y•) -27t/y/ ]} • 
- 2(1+4y2)(9+ 4y2)(l + e ) ' 

_ ] + 9 (1 + Gy2) (1 + e-2"1Yl) l} . 
2 (1 + 4y2) (9 + 4y2) J , 

a yz =~- - ~-:~l 
cro cru 

y { 9 y• [ (7- 8y2) (1 + e-2"/YI) J} 
= - 1 + 1.2 _1- 8k (1 + yz) 1 + 2 (1 + 4y2) (9 + 4y2) · 
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Equations (4.5) have meaning only for r « 1., r 
< d/2, when we can neglect the dependence of the 
Hall field Ez on the coordinates. For 'Y « 1, 

"yy 2 [ 1 3 3rr I r} (4 6) -=y) +---- y . • 
"o \ 2k 4k ' 

"zz = y2{1+ ~LrJ\. "yz =- "zy = -y{1-y2-2r}. 
"o , 8k ) ' cr0 cr0 k 

b) In the case of a weak magnetic field ( d < 2r ), 
the function s ( T) is determined differently for the 
regions sin .J < a/2 and sin .J > a/2. For sin .J 
< a/2, s ( T) is given by Eq, (4.4), while if sin.J 
> a/2, then 

s (1:) = -rr- 1: for -rr 12 < 1: < 1:0 ; 

s(1:)=arc sin(sin'l:-IXIsin.&) for "o<"<rrl2; 

s (1:) = rr -1: for rrl2 <"< rr + 1:0 ; 

s (1:) = rr- arc sin (sin"+ IX I sin.&) for rr + "o <" <;:; 3rr f 2; 

"o = arc sin (- 1 +IX I sin.&). 

Let us cite the result for the conductivity of 
the film in a weak longitudinal magnetic field 
(E II H II x), when 'Y » 1/k + k, 01. « 1: 

(4. 7) 

Here aF is the conductivity of the film in the ab­
sence of a magnetic field, obtained by Fuchs, 1 

while the coefficient M depends on the thickness 
of the film: 

3 { [ k 2 J k• } M = 64k - 1 + 2 1 + k + 6 (1- k) e-k + .3 £ 1 (k) . 

5, SPECIFIC RESISTANCE AND THE HALL 
FIELD. COMPARISON WITH EXPERIMENT 

By experiment one usually obtains not the di­
rection of the electric field, but the current den­
sity and, consequently, the resistivity tensor P·k 
= aill rather than its inverse, the conductivity 1 

tensor. Employing the results obtained above for 
aik• it is not difficult to find the dependence of the 
electrical resistance on H. 

Let us obtain the formulas for the resistivity 
and the Hall field in a film located in a strong 
magnetic field, in the presence of two types of 
current carriers (electrons and "holes"). The 
indices 1 and 2 will refer to electrons and "holes," 
respectively: 

1) n1 f. n2; 

Here, Ui = mi/toi is the mobility of the carriers; 
ki = d/l.i; the subscript symbols in all the quanti­
ties indicate the orientation of H relative to the 
surface of the film, while the superscript symbols 
for pll denote the orientation of the current rel­
ative to the magnetic field. 

2) n1 = n2 = n; 

u { 1 3rr nee r 1 1 )} 
Pu=Po +sPo"F\k;+k;; 

.L- H2 . 
P II - ne2 [u, + U2 + 3/2 (utfkl + Uz/k2)) ' (5.2) 

(Ey\ e ui-u~- 3j.(uUk1 -u~jk2) 
\E).L= eH Ut+uz+"! 8(ullkt+u2fk2); 

The Hall constant R = E z/jH = - oV I jHd in strong 
fields ( oV =potential difference between the sides 
of the film) for n1 f. n2 becomes identical asymp­
totically with that for the massive metal 

R.'""' llec (n1 - n2), 

and for n1 = n2 depends on the thickness of the 
film: 

u2 u2 + 2 (u2 I ,., 2 I k ) R . = I - 2 1 ,. "'1 - u2 2 

II nee (ut + u2) [u, + U2 -t- 312 (u, 1 k1 + u2 I k,)j 

u2 u2 "I ( 2 1 k 2 , , ) R - 1- 2- • ul: 1- u2' R, 
1·- nee [u1 + u2 + 3; 8 (ul / k1 -r- U2 1 k 2)ji (5.3) 

We proceed to a comparison of theory with ex­
periment9 on the effect of the shape of the speci­
men on the resistance of single crystals of Bi. 
From the fact of the increase in resistance in a 
strong magnetic field for massive Bi, we can draw 
the conclusion that n1 = n2, while it follows from 
experiments on the de Haas -van Alphen effect12 

that the Fermi surface for electrons in Bi is rep­
resented by a set of three uniaxial ellipsoids, lo­
cated in a binary plane and turned one to the other 
by 120" about an axis of third order. The .Fermi 
surface for the •holes" in Bi was little investi­
gated, but usually it is spherical. For simplicity, 
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we replace the set of three ellipsoids by a single 
sphere (qualitative results are not changed for 
this case). From the equality of electrons and 
•holes" follows the equality of the boundary mo­
menta and their orbital radii. The minimum re­
sistance on the rotation diagram for cp = 0 ( cp 
=angle between H and the film surface, H .L j) 
discovered in Ref. 9 is satisfactorily explained 
by the formulas ( 5 .2) : 

.L -
~ = d+3~1 8 < I; 2 IT= I Ill+ I I !2; U; = pI l;o 
P 1. d+31 1 2 

It is seen from (~.2) that the increase in the 
resistance of the film in a strong transverse mag­
netic field takes place according to the same law 
as for the massive metal ( ki = oo), but more 
slowly than in the latter:* 

pf (d) I Pt ( 00) = d I (d + 3T I 2) < I; 
P.L (d) IP.L (oo) = df (d + 3lf 8) < lo 

The dependence of the quantity {3 on the mag­
netic field 

P. .L I d + 3[(8 {I + 37t __ r __ } 
r = r n P 1. = d + 31/ 2 4 d + 371 2 

= d + 3I /8 {I + ~} H = ~ pc ~ H 
- d + 31/2 H ' 0 4 e (d + 31/2) ' (5.4) 

agrees with that observed by Borovik and Lazarev 
for the decrease in this ratio in a strong field. 

The presence of a discontinuity (jump in the 
derivative) for the quantity {3 at r = d/2 is 
clearly evident in Fig. 6 of Ref. 9. 

Change of {3 with temperature is connected 
with the temperature dependence of the mean free 
path !. For R. « d, (5.4) gives unity while for 
i » d, {3 ::::! %. In Ref. 9, at low temperatures, 
when we can assume that R. » d, the quantity 
{3 ,..., Y2'. This difference can be connected both 
with the anisotropies of the dispersion law and 
the mean free path length, and also with the fact 
that 1,..., d in the region of residual resistance, 
where 1 no longer depends on the temperature. 

It is obvious that in such experiments only the 
mean free path length 1 can be measured, and 
not ! 1 and !2 separately. 

Comparison with experiments on the depend­
ence of the Hall field in the film on H is not pos­
sible because of the absence of experimental data. 

*An exception is the specimen Bi-3 investigated in Ref. 9, 
the massive part of which (according to the way of obtaining 
it) was more "rougher" than the film, i.e. 'P < d('!,tr+ d)/ 
- 'Vmass 

tf' 

6. THERMOMAGNETIC EFFECTS IN FILMS 

The effect of the magnetic field on the thermal 
conductivity, the coefficients of Thomson, Peltier 
and others, in a massive metal, was studied by 
Azbel', Kaganov, and Lifshitz. 13 Here we sball 
briefly consider the thermomagnetic effects in 
films and establish the connection of the tensors 
of thermal conductivity and the Thomson coeffi­
cients with the electrical conductivity tensor . 

If a temperature gradient exists in the metal; 
then a heat current arises, the density of which, 
w, is equal to 

w = 2h-3 ~ svf (dp)o 

To find the kinetic coefficients, we must compute 
the density of the electric current j and the en­
ergy flux density w, which arises as a result o( 
the electric field and the temperature gradient. 
In this case, in the right side of the kinetic equa­
tion (2 .2), we have, in place of eE ·V ofo/8€: 

eEv ~~o - v ~~ 'VT. (6.1) 

In those cases in which we can introduce the ef­
fective conductivity tensor (see Sec. 2 -4), we 
have 

-:- - (0)-- 0 - " - (1)-
J; = ::Jn,Eh + SnJJT I OX!" W; =,,kEn+ Stk aT I 0Xn,(6 .2) 

where 
co 
· at 

::itk = - ~ a: Vift (s) ds; 
0 

co (6.3) 
S (n) ( l)n -1-n \ ato ( ) d 

ih =s - C .) Sn aT Ofh 6 S, 

0 

while aik (E) is determined by the formula 

Otk (s) = 2~: ~ ~ dpH r Vt ('c) d't ~ exp (~' yd't2) d'tl 
•(p)~< II -co -r 

From the law of conservation of energy, we get 
[and also from (6.2)]: 

aQ 0 E aw, _ 0 0 a r aT ) 0 aT 
7ii =]i ~- axt =Ptll]tlk+ axt \"'tkaxk -flthltaxk. 

Here Q is the internal energy density; Pik = aik1 

the resistivity tensor; 

1- c(O) s(l) s(O) a (c ) ><tk = ,,pppq'-"qk- tk n fltk = Ptp pk+ aT otpPpk -
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are the thermal conductivity and Thomson coeffi­
cients. 

It was shown in Ref. 13 that if the collision op­
erator was a <5-function in the energy, then for 
each of the components of the tensors of conduc­
tivity and thermal conductivity, the Wiedmann­
Franz law is satisfied. The calculations carried 
out in Ref. 13 are not connected with the concrete 
form of aik' llik' Kik' and therefore we can 
make direct use of the results of Ref. 13 and write 
down at once: 

Here to = t ( 0) is the chemical potential of the 
electron gas at absolute zero (the limiting Fermi 
energy), k is Boltzmann's constant. Thus, the 
tensors Kik and llik are expressed in terms of 
the tensor aik studied above. 

In conclusion, I take this opportunity to thank 
M. Ia. Azbel', E. S. Borovik, B. G. Lazarev, and 
I. M. Lifshitz for useful discussions and criticism 
of the results of the research. 
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A study is made of the stationary convection of an electrically conducting liquid in the space 
between two parallel plates, heated to different temperatures, in the presence of a magnetic 
field. The distribution of velocity, temperature, and induced fields are found, and the con­
vective heat flow is calculated. 

IT is well known that currents are induced in a 
conducting liquid which moves in a magnetic field. 
The interaction of these currents with the mag-

netic field is the cause of the various magneto­
hydrodynamic effects which have been intensively 
studied in recent years. The magnetic field will, 


