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are not introduced artificially or without any rea
sonable basis, as is done in many works on ordi
nary quantum field theory. One may hope that 
these operators will make it possible to eliminate 
the difficulties associated with divergences in 
field theory. 

In conclusion, I express my gratitude to Pro
fessor Iu. M. Shirokov for discussing the results 
of the present work. 
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We consider circular waves in an uncompensated electron-ion beam in a cylindrical wavE2-
guide with perfectly conducting walls. The magnetic field produced by the beam current is 
assumed to be very strong. We treat the problem qualitatively, without an exact solution of 
the differential equations. It is shown that the beam is stable with respect to the oscillations 
being considered, and the natural frequency bands are found. The electromagnetic field is 
mapped. 

l. The stationary state of an electron-ion beam 
has been examined by Bennett1 and Budker.2 

In the present article we consider the oscilla
tions of an electron-ion beam in a cylindrical wave
guide of radius R. We shall treat circular oscil
lations, which means that we assume the electro
magnetic field, as well as the electron and ion den
sities and velocities, to be independent of z, and 
the dependence of these quantities on r, cp, and 
the time t to be given by 

(1) 

The conclusions we reach can be extended to per
turbations of a more general form, namely 

F (r, ?• z, t) = f (r) ei(wt-p.<P- -rz>, 

so long as the condition yR « 1 is satisfied. 
The amplitude of vibrations is considered 

small, and the equations are linearized. The prob
lem is solved in the hydrodynamic approximation; 

the electrons and ions have different temperatures, 
which are constant in space and time. 

We assume also that the magnetic field pro
duced by the beam current is so strong that the 
inequalities 

I elf cpo (r)jmcw I ::}:> I, i elf <~>O (r)/ Mew 1 ~ I (2) 

are fulfilled at all points within the waveguide. 
Here Hcpo ( r) is the magnetic field strength, w 
is the frequency 

m = moJV 1- ~!' M = M 0/V1 - ~7; ~e = Voe/C, ~~ = Vot/C, 

m 0 and M0 are the electron and ion rest masses, 
and Voe and Voi are the electron and ion veloci
ties in the stationary state. Since we are dealing 
with a strong magnetic field, the variable compo
nents Ver• Vez• Vir• and Viz of the electron and 
ion velocities are small. 

We shall show below that the beam is stable with 
respect to the oscillations we are considering, and 
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that the J,Lth natural frequency lies in the interval 
J.!ViT/R < w < J.Lc/R, where viT is the thermal 
velocity of the ions, given by viT = ../ T/M. Here 
Ti is the ion temperature in energy units. The 
thermal velocity of the ions is assumed to be less 
than that of the electrons, given by VeT= ITe/m. 

We shall show also that at the distance r = 
J.!ViTiw from the beam axis the vibration ampli
tude of the ions has a sharp maximum. This oc
curs because at this radius the thermal velocity 
of the ions and the phase velocity of the wave are 
equal. A similar resonance takes place for elec
trons at r = J.LVeTiw, so long as this value of r 
lies in the interval 0 < r < R. 

2. In the stationary state the electron and ion 
densities noe and noi• the magnetic field Hcp0, 
and the electric field Ero are of the form 1•2 

noe (r) = 2 [Te (I-~~) . 
+ T' (I - ~~~.) ]/1te2 (~.- ~,)2 r~ (I + r2 jrf;l, 

n0; (r) = 2 [T1 (I - ~;) 

+ T. (I - M1) ]j1te2 (~.- ~1) 2 r~ (I + r2jr~) 2 , 

H "'o (r)= 27te [n0, (0) ?t- n0e (0) ~.] rj( I + r2/r~), 
£,0 (r) = 27te [n0, (0)- n0e (0)] rj(I + r2/r~), 

(3) 

where r 0 is the effective radius of the beam. All 
the other components of the electric and magnetic 
fields vanish. If the beam axis is made to coincide 
with the axis of the waveguide, Eqs. (3) for the 
electric and magnetic fields satisfy the boundary 
conditions E x n = 0 and H . n = 0 on the surface 
of the waveguide. Therefore the state of the elec
tron-ion beam will not change if it is in a cylin
drical waveguide of any radius R whatsoever. 

If we use E and H to denote the variable 
parts of the electric and magnetic fields, and Veep• 
Viep• ne, and ni to denote the variable compo
nents of the electron and ion velocities and densi
ties, then Maxwell's equations, the equations of 
motion, and the continuity equations become (the 
constant components cancel out) 

H,=Hrp=Ez=O. 

In the continuity equations we have dropped 
terms containing Ver and Vir• since they are 

small compared with Veep and vicp. We shall not 
write out those equations which contain products 
of a large quantity Hcpo, n0e, or n01 by a small 
one Vor• Vez, Vir• or Viz· These equations can 
be used to determine the velocities Ver• Vez• 
Vir• and Viz in the second approximation. 

When we linearize Eqs. (4) and make use of (1), 
we arrive at 

dH z iw 4n;en0e 4n;en01 
----£ ---v +--v· 

dr - c "' c erp c '"'' 

d (rE"') i!J. iw 
~+---,E,=--cHz, 

d (rE,) i!L 
~ ----, E'P = 47te(n1 - n.), 

imwve<p =- eE'P + i[LTene/n0er, 

iMwv;rp = eE'P + i[LT,ntfn0;r, 

Wne = ([Ljr) noeVeq, 

wn, = ([Ljr) n0,Viop· 

(5) 

(6) 

(7) 

(8) 
(9) 

(10) 
(11) 

From these equations we eliminate the electron 
and ion densities, obtaining 

Veep= iwr2eE"'j(w2r 2 - [L2V;r), 

V;rp = - iwr 2eE"'f(w2r 2 - [L2V~r). (12) 

Inserting (12) into Eqs. (5)- (7), we arrive at 

where 

- dHzfdr = (iwfc) q (r) £"', 

d (rE,)jdr = i[Lq (r) E'P, 

q (r) = I + n; (r) r 2/(fL2V:r- w2 r 2) 

+ !:27 (r) r2j([L2V~r- w2r 2), 

n; (r) = 47te2noe (r)jm, n; = 4rre2n0 ; (r)jM. 

(13) 

(14) 

(15) 

Eliminating q ( r) from ( 13), and integrating 
over r we have 

E, = - ([Lcjwr) Hz. 

Inserting this expression into (6), we have 

H _ _ iwcr d (rE'I') 
z - """'11-zo-coc-2 --w-=-2,'""2 dr (16) 

Finally, eliminating Er and Hz from (6), (15), 
and (16), we obtain the differential equation 

_!!____ [P (r) d (rE~]- q (r) E - 0 p (r) - czr (17) 
dr · dr 'P - ' - !J.2C2 - w2r 2 

for Eep, with the boundary conditions3 

E<p (0) finite, £"' (R) = 0 if fL = I, 

E<p (0) = 0, E<p (R) = 0 if fL >· 2. 
(18) 

The frequency w is an eigenvalue of the differ
ential operator of Eq. (17) with the boundary con-
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ditions (18). 
We note that Ecp(r) must not only satisfy the 

boundary conditions (18), but must also be finite 
in the interval 0 =::; r =::; R. In addition, v eqJ ( r), 
viqt( r), and Hz ( r), which are related to Ecp ( r) 
by (12) and (16), must also be finite in this interval. 

If all the eigenvalues w are real, the beam is 
stable. If, however, one or more of the eigenval
ues are complex, the beam is unstable. 

Since Eq. (17) cannot be solved exactly, we 
shall treat it in a qualitative way. 

We shall first show that w is always real. 
Let us assume the contrary, writing w = w0 + i'ry, 
where T'J f 0. Then the imaginary parts of p and 
q are given by 

lm p = 2c2rw0-~j/{[!J.2c2 - (w~- y12) r2 ] 2 + 4w~Yj2 r4 }, 

from which it follows that Im p and Im q always 
have the same sign. 

We may, on the other hand, by introducing the 
new variable u = rEcp, write (17) in the form 

(pu')'- qujr = 0 

with the boundary conditions 

u(O)=u(R)=O. 

(19) 

(20) 

Multiplying (19) by u*, the complex conjugate of 
u, integrating over r from zero to R, and then 
taking the imaginary part, we arrive at 

R R 

~Imp i u' j2 dr + ~ Im q I u [2 dr = 0. (21) 
0 0 

Since I u' 12 and I u 12 are both positive, this 
equation cannot hold if Im p and Im q have the 
same signs. Thus all the eigenvalues w are real, 
and the beam is stable with respect to the oscil
lations under consideration. 

To examine (17) further, let us eliminate from 
it the first derivative. To do this, we make the 
substitution 

y = cr Vr E9/V fL2C2 - w2r 2 • 

Then (17) becomes 

d2yjdr2 + Q (r) y = 0, 

where 

(22) 

(23) 

q(r) is given by (14), and y(r) satisfies the 
boundary conditions 

y(O) = y(R) = 0. (25) 

We shall first show that the frequencies w are 
no greater than ~-tc/R. To this end, let us con
sider the behavior of Ecp ( r), Vicp ( r), Veep ( r), 
and Hz ( r) in the interval 0 =::; r ::s R. Equation 
(23) has four singular points, namely r = 0, 1-t x 
viT/w, 1-!VeT/w, and ~-tc/w. It can be shownthat 
Ecp ( r), since it satisfies the boundary conditions 
(18), remains finite at these points. Expressions 
(12) and (16) show, however, that at r = /-(viT/w 
and r = 1-!VeT/w the velocities Vicp and VeqJ' re
spectively, become infinite, and that at r = ~-tc/w 
the magnetic field Hz becomes infinite. 

The first two infinities are fictitious because 
the linearization of (27) in the neighborhoods of 
r = 1-!ViT/w and r = 1-!VeT/w is invalid. To show 
this, consider the nonlinear equations (4). We 
shall attempt to find a solution of these equations 
in which the desired functions contain the time t 
and the angle cp only in the combination ~ = wt 
- 1-LCfJ· It follows from Eqs. (4) that at r = 1-t x 
ViT/w 

(26) 

This equation indicates that vicp is of the same 
order as ..rE;p. Since Ecp is small, Vicp is also 
small, but of lower order. In the linear approxi
mation this means that vicp becomes infinite if 
Ecp remains finite. Thus at the point r = 1-t x 
viTI w the amplitude of the ion vibrations in
creases sharply. At the point r = JJ.VeT/w there 
will take place a similar resonance in the elec
tron vibrations. 

As. for the point r = ~-tc/ w, the magnetic field 
Hz remains infinite at this point also in the non
linear theory. Indeed, were we to repeat the op
erations which led to (16), this time on the nonlin
ear equations (4), we would obtain 

aH z Cilcr a (rE,) 
~ 1-'2C2 _ Cilz,z --a;- ' 

for which it follows that Hz becomes infinite at 
r = ~-tc/w. It can also be shown that this infinity 
is not removed when one takes account of colli
sions. 

It follows from this that the point r = ~-tc/ w 
must lie outside the interval 0 =::; r =::; R. In other 
words, it is necessary that 

w < p.cjR. 

This inequality determines the upper bound of the 
eigenvalues w. 
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In order to find the lower bound, we note that 
Q ( r), the function given by (24), will be negative 
over the whole interval 0 ::s r ::s R if w < 1J. x 
viT/R. As is known, 4 however, Eq. (23) has no 
solutions satisfying conditions (25) if Q ( r) is 
negative. It is therefore necessary that w > 1J. x 
viT/R. 

We have thus proven that the eigenvalues w 
cannot be complex and must lie in the interval 
IJ.ViT/R < w < iJ.C/R. In the process we have as
sumed the existence of eigenvalues of the opera
tor of (23) with boundary conditions (25). In other 
words, we have assumed that circular waves can 
actually exist. In order to prove the last state
ment, we note that as w - IJ.ViT/R + 0, the func
tion Q ( r) - + oo. From this it follows that there 
exists an infinite number of eigenvalues.4 

The inequality w < iJ.C/R indicates that cir
cular waves have low frequencies, which means 
that they are not magnetohydrodynamic.5•6 We 
note that at the resonance point r = IJ.ViT/ w, the 
phase velocity of the wave is V = rw/iJ., whose 
form is reminiscent of the Alfven velocity7 

Let us go on, finally, to the mapping of the 
field. From the form of p ( r) and q ( r) in Eq. 
(17) it follows that an expansion of E<P ( r) in 
powers of r contains only even powers when 1J. 

= 1. Therefore Eo/( 0) = 0. In order to find the 
behavior of E<P ( r) in the neighborhood of r = 
IJ.ViT/w, let us make use of (23). Since Q (r) 
- -oo as r- IJ.ViT/w- 0, and Q (r)- +oo as 
r-- ( IJ.ViT/w) + 0, the r dependence of y [and 
therefore also the function E!P ( r)] is of the form 
shown in Fig. 1 (when IJ.VeTiw < R). 

When IJ.VeTiw > R, the graph of Ecp(r) is of 
the form shown in Fig. 2. Both of these graphs 
are for IJ. = 1. Figures 1 and 2 show those eigen-

vir ver 0 vir 
w w w 

Fig. 1. Fig. 2. 

functions of the operator of (17) which belong to 
the largest eigenvalue w. It can be shown that 
these functions have no zeros within the interval 
0 < r < R. 

In conclusion, the author expresses his grati
tude to Professors A. I. Akhiezer and Ia. R Fain
berg for aid in the work, and to G. Ia. Liubarskii 
for discussion. 
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