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small ( < 1 Bev), then, as a consequence of the 
considerable divergence angle of the electron and 
the positron, the length of the track is, as a rule, 
too short for the application of method 2. On the 
other hand, in the most cases, at electron ener
gies > 30 Bev, measurement of the Coulomb scat
tering is impossible. Exceptions are pairs with 
tracks ~ 4 em long within the limits of the emul
sion. 

It is advisable to employ method 1 at energies 
< 1 Bev and method 3 at energies > 30 Bev. 

A trident was formed 19,355~-t from the start 
of pair No. 1. True tridents satisfy the following 
criterion 10 

where ei is the angle that the i -th electron track of 
the trident makes with the continuation of the primary 
track; ai is the average angle of multiple scat
tering (including the Coulomb and all other types 
of scattering) of the i-th electron. It follows from 
Table V that this criterion is satisfied here, 

On the other hand, according to the plot ob
tained by Kaplan and Koshiba, 10 the probability that 
this is a bremsstrahlung pair, less than 0.2~-t away 
from the primary electron track, is nearly 8%. 
These circumstances make it possible to assert 
that the trident is a true one. The total length of 
all electron tracks in the reviewed band is 25 em. 
Consequently, the average length of formation of 
the trident at an energy of 6 Bev is on the order of 

25 em, which is in agreement with the Bhabha 
theory .14 
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The GeYfand-Iaglom field equations are extended to the general theory of relativity. 

To obtain a generalized wave equation for a field 
in general covariant form, one must define covar
iant differentiation of a generalized wave function 
describing particles with arbitrar:y spin. GeYfand 
and Iaglom, 1 Dirac, 2 and Fierz and Pauli3 have 
studied the generalized wave equation in the spe
cial theory of relativity. In the present article, 

their theory is extended to the general covariant 
form. 

1. SEMIMETRICS AND SEMIMETRIC REPRE
SENTATION 

We introduce the metric gik in space-time 
with the aid of the asymmetric matrix 11 A.i(a) n 
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according to4 
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gik = Ai(a) Ak(a) • II A ;(a) 112 = llgnJ · (1) 

Formally Ai(a) may be thought of as half the 
metric gik· We shall call it the semimetric, and 
the representation shall be called the semimetric 
representation. The metric gik remains invar
Iant if the semimetric A. i( a) is subjected to the 
orthogonal transformation 

(2) 

where 11 L(a,B) II is an orthogonal matrix, which 
means that 

(3) 

This is easily seen from (2) and (3), according to 
which 

g;k = /,;<,> /..~<"'> = "*> /..~<<•> = gik" (4) 

Therefore all the equations of the general theory of 
relativity must remain invariant with respect to 
two transformation groups, namely, (a) the group 
of general transformations of all coordinates ofthe 
form 

(5) 

and (b) the group of orthogonal transformations of 
the elements of the semimetric matrix 

According to Eq. (1) 

I DeDi(") I=+ VDetgik =f=O. 

Denoting the ele.ments of the inverse matrix 
11 Ai(a)ll-1 by A.\a)• we have 

/,f,l)'iWl = a<,~>; /,f,l/'k("'l = o~. 

We define 

(6) 

(7) 

(8) 

We shall call these new coordinates X(a) the 
semimetric coordinates. From (8) and (1) it fol
lows that 

This means that in semimetric space the element 
of length is given by a normal quadratic form and 
is invariant under the linear transformation 

(11) 

From (9) we obtain 

),; (<X) =ax(,) I iJxi, Af,) = iJxi I iJx(a)· (12) 

It follows from (11) that 

so that 

(13) 

2. COVARIANT DERIVATIVE OF A GENERAL
IZED FIELD FUNCTION 

Let us introduce an n-dimensional matrix vec
tor in semimetric space, whose components L(a) 
form a set of n Hermitian matrices satisfying 
the condition 

(14) 

where l(a,B) is an infinitesimal operator of a 
representation of the group of linear transforma
tions of Eq. (11). These infinitesimal operators 
satisfy the commutation rules 

[/("'~l> /(yoJL = o(ay/(~lll + o(~a/<"'Yl- o("'o/WYl- o(~Y/(>ol· 
(15) 

We shall denote the contravariant and covariant 
components of this matrix vector in Riemannian 
space by 

(16) 

Writing 

we can readily obtain from (14), (15), and (1) the 
relations 

[L;, /I~<L = g;1Lk- gikLi; 

[/;J,hiL = g;iiz + gilln,- g;/Jk- g1in· 

(17) 

(18) 

Two complex generalized field functions l/J and 
ljj are called adjoint functions if the n Hermitian 
forms 

make up a vector in semimetric space. Under 
transformations of group (a) 

(19) 

the components of these vectors remain invariant. 
Under the transformations of group (b), we have 

(20) 

The generalized wave functions transform among 
themselves according to 

(21) 

where S is a matrix which varies from point to 
point and is related to II L(a,B) II by 

(22) 
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which follows from (20). In order to derive the co
variant differentiation formula for a generalized 
field function, we must define the concept of paral
lel displacement. If two points x and x + dx are 
separated by an infinitesimal distance, the wave 
functions at these points are related by the infin
itesimal linear transformations 

~ (x + dx) = [/ + A; dxi] ~ (x), 

~ (x + dx) = ~ (x) [/- A; dxi], (23) 

where A is a certain matrix. 
If (23) is to define parallel displacement, the 

vector "IPL(a)I/J, which is constructed of If and lj!, 
must undergo a parallel displacement, which 
means that 

A< a> (x + dx) = {o(«~l + 'IJ., («~l dx"} A<~> (x). (24) 

From (23) and (24) it follows that 

;v (x) [/- A; dxi] L<"-l [/ + A,. dxi] ~ (x) 

= ~L<s> t\1 [o<«~l + 'IJ; <«~> dx,.J. (25) 

where the 1Ji(af3) are the components of the af
fine connection, which have been given by Rumer .4 

According to E q. (25), the Ai are given by 

L<«JAt- A;L<«> = 'IJ,-<,~> L<~>· 

Multiplying (26) by 71.~o)' we obtain 

(26) 

L(«)A(a)- A(a)L(«) = 'IJ(a«~l<~hwhereA(a) = l.fa>A;; (27) 

where the 17(a{3y) = 71.ta)17i(f3y) are the Ricci curv

ature coefficients. 5 

The general solution of Eq. (27) will be 

A;= 1I2 '1J,-<«~l /<«~>+if,.!, (28) 

where the fi are arbitrary functions. This is 
easily seen by makip.g use of (14). 

Writing f(a) = 71-(a)fi, we obtain 

A(B) = 1l2 'IJ(a«~/<a.~) + if<8/. (29) 

Thus the covariant derivative of a generalized field 
function will be 

V;t\1 =at\~ I axi- A;•jl, V;~ =a~ I axi +~A; (30) 

and in semimetric space 

v(«)'~ =a~ I ax(<X)- A(a)'f, V(a)~ =a~ I ax(«)+ ~A(a)· (31) 

3. EXTENSION OF THE GEL'FAND-IAGLOM 
FIELD EQUATIONS TO THE GENERAL 
THEORY OF RELATIVITY 

The covariant field equations for arbitrary spin 
were obtained in the special theory of relativity by 
GeY fand and Iaglom, 1 and are of the form 

(32) 

where lj! is a generalized field function describ
ing particles with arbitrary spin, and the Lk are 
matrices which determine the linear transforma
tion properties of the lj! function. 

In order that Eqs. (32) become covariant with 
respect to all physically possible transformations, 
the ordinary derivatives 81j!/8xk which appear in 
them must be replaced by covariant derivatives 
'Vk1fi· Then the general covariant field equations 
will be 

(33) 

Inserting (30) into (33) and using (28), we obtain 

L h a~ I axlt + m'f- 112 L1''1)h(~y) /(By)<]i = 0, (34) 

where the Lk are matrix functions satisfying 
Eqs. (17). From (13), (16), and (34) one can ob
tain the general covariant field equations in semi
metric space, namely 

L(•) a<ji I ax( <X)+ m<ji- 1/2 "l(a~y)L(a)l (~y)~ = 0, (35) 

where the L(a) satisfy relations (14). If L(a) 
= 'Y(a)• where the 'Y(a) are Dirac matrices, then 

(36) 

and (34) become the general covariant Dirac equa
tion 

~'<,> a<f I ax<'"> + m~- 114 ~'<">~'<~>~'<Y> "l<"~Y> 'f = o, (37) 

a special case of (34) which has been previously 
obtained by Fock and Ivanenko.6 This shows that 
Eqs. (34) and (35) are of greater generality. The 
general covariant Lagrangian is in this case 

L = 1l2 {~Lit ( :~,- Ah'f) -- ( ~ + A~t~)L k<ji + 2m~·Ji}. 
(38) 

If (38) is substituted into Euler's equation, one 
easily obtains Eq. (34). Further, it is easily 
shown that the symmetric energy-momentum ten
sor and the current vector in general covariant 
form can be written, respectively, 

T;~t = 1l2 ~L1t V,-<ji + ~L;V~t'f- V,.~Lk·ji- V~t~L;•jl], (39) 

·k . -;J;L"·'· J = ze-r 'l'· (40) 

It should be noted that the field equations (35), as 
opposed to those of the special theory of relativity, 
contain the additional operator terms 

ilm = 1/2 "l<a~yl<a/WYl• 

acting on the spinor or tensor fields. These op
erators may therefore be treated as mass opera
tors entering the theory in a natural way. They 
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are not introduced artificially or without any rea
sonable basis, as is done in many works on ordi
nary quantum field theory. One may hope that 
these operators will make it possible to eliminate 
the difficulties associated with divergences in 
field theory. 

In conclusion, I express my gratitude to Pro
fessor Iu. M. Shirokov for discussing the results 
of the present work. 
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We consider circular waves in an uncompensated electron-ion beam in a cylindrical wavE2-
guide with perfectly conducting walls. The magnetic field produced by the beam current is 
assumed to be very strong. We treat the problem qualitatively, without an exact solution of 
the differential equations. It is shown that the beam is stable with respect to the oscillations 
being considered, and the natural frequency bands are found. The electromagnetic field is 
mapped. 

l. The stationary state of an electron-ion beam 
has been examined by Bennett1 and Budker.2 

In the present article we consider the oscilla
tions of an electron-ion beam in a cylindrical wave
guide of radius R. We shall treat circular oscil
lations, which means that we assume the electro
magnetic field, as well as the electron and ion den
sities and velocities, to be independent of z, and 
the dependence of these quantities on r, cp, and 
the time t to be given by 

(1) 

The conclusions we reach can be extended to per
turbations of a more general form, namely 

F (r, ?• z, t) = f (r) ei(wt-p.<P- -rz>, 

so long as the condition yR « 1 is satisfied. 
The amplitude of vibrations is considered 

small, and the equations are linearized. The prob
lem is solved in the hydrodynamic approximation; 

the electrons and ions have different temperatures, 
which are constant in space and time. 

We assume also that the magnetic field pro
duced by the beam current is so strong that the 
inequalities 

I elf cpo (r)jmcw I ::}:> I, i elf <~>O (r)/ Mew 1 ~ I (2) 

are fulfilled at all points within the waveguide. 
Here Hcpo ( r) is the magnetic field strength, w 
is the frequency 

m = moJV 1- ~!' M = M 0/V1 - ~7; ~e = Voe/C, ~~ = Vot/C, 

m 0 and M0 are the electron and ion rest masses, 
and Voe and Voi are the electron and ion veloci
ties in the stationary state. Since we are dealing 
with a strong magnetic field, the variable compo
nents Ver• Vez• Vir• and Viz of the electron and 
ion velocities are small. 

We shall show below that the beam is stable with 
respect to the oscillations we are considering, and 


