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A (2 + 16p) shower produced by a singly-charged particle of (5:_1~) X 1012 ev energy is an­
alyzed. The energy spectrum of the secondary particles differs from that predicted by Lan­
dau's theory, but is consistent with Heisenberg's theory. The inelasticity coefficient is sig­
nificantly smaller than unity. The fraction of energy consumed in meson production is on the 
order of 10-15%. The ratio of neutral pions to charged shower particles is R = 0.54 :1: 0.18, 
which indicates that a small fraction of the charged shower particles consists of heavy mesons 
and nucleons. 

A ( 2 + 16 p) event was observed in an Ilford G-5 
emulsion 600p. thick, exposed in Italy in 1955 at an 
approximate altitude of 30 km. The energy of the 
primary particle, estimated by the usual kinematic 
method, is ( 5 :_1~) x 1012 ev. The shower particles 
are contained within an angle of 1.7 x 10-1 radians. 
The central tracks cover a distance up to 5 em 
within a single plate. This made it possible to de­
termine the energy of 15 shower particles by di­
rect measurement of the multiple Coulomb scatter­
ing. 

1. MEASUREMENT OF MOMENTA OF SECOND­
ARY PARTICLES 

Figure 1 shows a microdiagram of the analyzed 
shower. The momenta of the secondary particles 
were determined by measuring their multiple Cou­
lomb scattering. Measurements were made with a 
MBI-8M microscope of total magnification 60 x 2.5 
X 15. The noise level of the stage with standard 
glass guide did not exceed 0.06p. per 1000-p. cell. 

The geometry of the arrangement of the tracks 
in the shower did not permit the use of the relative­
scattering measuring method. The scattering was 
therefore measured for each shower track sepa­
rately. The directly-measured scattering D (the 
second difference of the coordinates of the tracks, 
determined over a cell length t) consists of true 
Coulomb scattering, D0 , and of scattering due to 
all other ~actors, n. Assuming that these quanti­
ties are independent and that they have a Gaussian 
distribution, we can write 

15i = 15~ + n2 , 

De = kt''· 1 p~, 
(1) 

(2) 

where k is a constant, p is the momentum, and 

{3 the particle velocity in terms of the velocity of 
light. The quantity n depends on the false scat­
tering, due to microdistortions of the emulsion, 
nonlinear motion of the microscope stage, asym­
metry of the track grains, inaccuracy of reading, 
fluctuations in microscope temperature (thermal 
noise), and variation of the microscope focus. 

In the case of high-energy particles, n depends 
essentially on the microdistortions of the emulsion, 
which vary with a certain power of the cell length. 
We can therefore put n ~ tx without introducing 
an excessive error (Ref. 1). 

The value of n can be determined by measur­
ing the scattering of a high-energy particle by 
three cells along its track. For cells t 1, t2, and 
t 3 with a ratio 1: 2 : 3, Fowler et a1. 1 obtained the 
value of x and derived a formula for n1 on the 
basic cell t 1: 

n1 = [(27Di -D§) I (27- 32x)j'1•. (3) 

The value of x is considered constant for a given 
emulsion. However, the value of x for individual 
tracks within the same emulsion may differ con­
siderably from the average value. In the measure­
ment of the scattering, when De is not much 
greater than n, the elimination of each value of 
n is of major importance for the determination of 
the shower-particle energy. The method described 
below makes it possible to eliminate n for each 
track. Equation (1) for cells t 1, t 2, and t4, with 
a ratio 1 : 2 : 4, can be written 

15i =Die+ ni, 
m = D~e + n~ = 8Die + 22xni, (4) 

15! = D!e + n! = 64Die + (22x)2 ni. 

Such a choice of cells makes it possible to elim-
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Fig. 1. Microdiagrarn of the shower, which 
is formed by a singly-charged particle (probably 
a proton) of energy(5~~ 0) x 1012 ev. 

TABLE I 

n \ 10-• t, 1'-

Number of 
No. tracks\ tracks 

12 2.2 0.25 40 12 
15 5.6 - 10 15 
13 5 0,13 40 13 
11 1.73 0.38 40 11 
10 3.6 0.07 40 10 
8 1. 75 0.46 40 8 
9 4.5 o: 18 40 9 
7 1 0.59 40 7 

16 5.5 - 10 16 
6 1:9 0,34 20 6 
5 3.2 0.19 20 5 

14 2.8 10 14 
4 2.7 5 4 

17 2 5 17 
3 1. 5 

I 
5 

18 1.6 5 
I 

3 
18 

19 

18 

p~c. Bev 

27±9 
1.1±0.1 
15±4 
24±8 
14±5 
19±6 

8.3±2.3 
>25 

1.5±0.2 
8,3±2.2 
6.0±1.5 
3.6±0.9 
1.0±0.3 
2,2±0,6 
3.3±1.1 
1.6±0,9 

I 
a; 

.' .. 
I 

I 
: 

/7 

3'±2' 
21'±3' 
22'±5' 
22'±7' 
28'±6' 
37'±1' 
40'±6' 
46'±3' 

1 °05' ±1' 
1°21'±4' 
2°03'±2' 
2°39'±2' 
4°08'±6' 
5°04'±2' 
7°16'±6' 
9°40'±3' 

, 
l 

l 

I 

i 
/ 

; 

/ 

/ 
I 

TABLE II 

I 
Ei from 

Landau's 
theory 

2605.1 
452,9 
434:4 
348.2 
268.3 
249.1 
217.5 
154:9 
124.2 
80.5 
61.3 
37,6 
29.8 
19.4 
13.8 
8.3 

16 

I 

p 

~ j 

i .- ~ . : 
,. : l "\ .. 

: . : 

\ 
2 

~:;:.: ~= 

~~· ;i ~ : .. 
1412 /0(/7 6 54 

15 IJ/1 8 

p. ;mrtc 
I 6~ I . .!.. 

I 

0.16 5°36' 
0.05 179°03' 
0.66 46°05' 
1:10 39°02' 
0.81 56°47' 
1.48 63°30' 
0.68 83°53' 
- -

0.20 175°14' 
1.39 117°13' 
1.84 136°22' 
1.17 151°27' 
0.51 173°35' 
1.37 166°14' 
2:94 165°35' 
L90 169°33' 
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l 

' E 1. Bev 

0.28 
0.47 
0.19 
0.28 
o:19 
0.27 
0.16 
-

0.37 
0.26 
0,34 
0.37 
0.65 
o:8o 
1,53 
1.50 
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inate x from the system of equations (4). The 
solution yields 

or 

(5) 

(6) 

In our measurements, the values of n were cal­
culated from (5). They are listed in Column 3 of 
Table I for the cells indicated in Column 4. For 
tracks where formulas (5) cannot be employed be­
cause of the small number of measurements, the 
value of n is assumed equal to the value obtained 
at the nearest track in which the above method is 
still applicable. In such cases no value of n is 
given in Column 3 of Table I. Let us note that the 
procedure developed here is not applicable in the 
case when n « De or when the forward scatter­
ing varies with the length of the cell in the same 
ratio as the Coulomb scattering (x = %>. 

The reliability of the data obtained depends on 
the ratio D/n =A and, naturally, on the number 
N of independent measurements of the second dif­
ferences of the coordinates of the track, when the 
chosen cells do not overlap. The values of A for 
the cells indicated in Column 4 of Table I are 
given in Column 2 of the same table. 

When A > 4, the effect of the false scattering 
on the error in the determination of D can be 
neglected. For high-energy particles, owing to 
the insufficient length of the track, it is frequently 
necessary to confine oneself to A < 4. However, 
when A fO:I 1, the measurement of the scattering 
becomes meaningless. This means physically that 
the observed scattering is of the same order as 
the false scattering. Consequently, the error in 
the determination of the momentum of the parti­
cles will not be less than 100% in such cases. For 
particle No. 7, A= 1, and consequently this means 
that its energy cannot be determined, The value 
observed for this particle on a cell with t = 4000 
JJ. is D = 0.59 ± 0.17 JJ.. According to formula (2), 
this scattering corresponds to an energy of 25 
Bev. Thus, the energy of this particle can be 
equal to or greater than 25 Bev. 

The values of the energies of the other shower 
particles are given in Column 2 of Table II. The 
relative error in the quantity p/3 is 

Ll (p~) I p~ = 0.75N-'I. (I- A-2)-'/., (7) 

Measurements of the shower tracks were made in 
cells ranging from 500 to 4,000JJ.. The basic cells 
were taken to have t = 500JJ. and t = 1,000JJ.. For 

t = 2,000JJ. and t = 4,000JJ., overlapping of the 
cells was employed. 

2. ANGULAR AND ENERGY DISTRIBUTION OF 
SHOWER PARTICLES 

We used the coordinate method to determine the 
angles ei of the shower particles with respect to 
the shower axis. 

For small angles (tanei::::: sin9i::::: ei), the fol­
lowing formula holds 

e, =VA.~+('!',- 'flo) 2 , (s> 

where cp0 is the angle of dip of the shower rela­
tive to the plane of the emulsion, 'Pi is the angle 
of the dip of the i-th shower particles, and Ai 
the angle of the i-th particle relative to the 
shower axis, measured in the plane of the emul­
sion. Table II (Column 3) gives the angles ei of 
the shower particles. 

Assuming a nucleon-nucleon collision, the en­
ergy of a primary particle is estimated from the 
median and geometric mean angles as well as by 
the method described in Ref. 2. The values of the 
energy E0, estimated in this manner, are in good 
agreement with each other. Taking into account 
the possible fluctuation deviation from symmetry 
(forward and backward) in the distribution of the 
particles, in the center-of-mass system, we can 
indicate the following tolerances in the measure­
ment of the energy 

Eo= (5~~o).JQ12 ev. 

Comparison with the Landau and Heisenberg 
theories was made with respect to the angular and 
energy distributions of the shower particles. 

Figure 2 shows a histogram of the angular dis­
tributions of the shower particles in the laboratory 
system. The ordinates represent the relative dif­
ferential density of the shower particles 

-8 -7 
l.n tan 8 

0 

Fig. 2. Histogram of the differential angular distribution 
of shower particles. 
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1 An8 

f (lntanB) = n;:,. lntana • 
s 

as a function of ln tan (I, wbere ns is the num­
ber of charged shower particles and 9 is the 
angle relative to the shower axis. The same dia­
gram shows the corresponding angular-distribution 
functions of the Landau theory3 (Curve I) 

-L 
fi (lntan6) = ,;- exp {V- (2L lntan6 + ln2tan6)}, (9) 

r 2nL 

and of the Heisenberg theory,4 assuming an aniso­
tropic (Curve II) and isotropic angular distribu­
tion of the mesons, in the c.m.s. (Curve III): 

fn (lntan6) = eL+Intane I (I + eL+Intane)2, 

fm (lntan6) = 3e2(L+Intane) I [I + e2(L+Intan6)]'1•. 

(10) 

(11) 

Formula (10) is valid for large energies of col­
liding nucleons. The function 

fiv (lntan 6) = 2e2 (L+lntan 6) I [I + e2 (L+Intan 6)]2 (12) 

pertains to the case of a monoenergetic and iso­
tropic distribution of the mesons in the c.m.s. 
(Curve IV), when the c.m.s. velocity equals the 
meson velocity in this system. The parameter of 
the angular distribution is 

1 n, 
L = -- ~ lntan6;. 

n, ~ •-1 

With the aid of the method of x2 tests, 5 we de­
termined the probability of the symmetry of this 
showertobe P(x2 ) = 75%, andcomparedthetheo­
retical curves I, II, III, and IV with the experimen­
tal angular distribution. The probabilities of the 
histogram of the experimental distribution coin­
ciding with the above theoretical distribution are 
estimated at 40% (I), 60% (II), 1% (III), and 1% 
(IV), respectively. The angular distribution of 
the shower particles is in best agreement with the 
Heisenberg-theory distribution. However, this 

Lin 

.1ln£ 
Q,t. 

Fig. 3. Histogram of the energy distribution of shower 
particles in the laboratory system of coordinates. Solid 
line- curve obtained from the Landau theory. 

Fig. 4. Histogram of energy distribution of 15 shower 
particles in the c.m.s. of the colliding nucleons. Curve­
energy spectrum according to the Heisenberg theory. 

calculation by the x2-test method is only tentative, 
by virtue of the small number of shower particles. 

To compare the energy distribution of the 
shower particles with the Landau theory, we plot­
ted a histogram of the energy distribution of the 
shower particles in the laboratory system of co­
ordinates, showing the distribution according to 
Landau (see Fig. 3). The abscissa represents 
the logarithm of the energy of the shower parti­
cles in units of the nucleon rest mass, and the 
ordinate the relative particle energy-distribution 
density. The intervals of the histogram ( b.ln E 
= 1) are much greater than the errors in the en­
ergy distribution, and therefore an account of 
these errors will affect very little the form of the 
energy distribution of the shower particles. 

It follows from this comparison that the energy 
distribution of the particles does not correspond to 
the Landau theory, in that the low-energy shower 
particles exceed the value expected from the the­
ory. Column 4 of Table II gives the values of the 
energy, calculated for the corresponding angles in 
accordance with Landau's theory. The comparison 
shows that the measured particle energy is one 
order of magnitude less than the theoretical values. 

To compare the energy spectrum with the Hei­
senberg theory, we recalculated the data to the 
c.m.s., using a value 'Yc =52. The values of the 
angles ei and of the energy Ei in the c.m.s., 
under the assumption that all the shower particles 
are pions, are given in Columns 6 and 7 of Table 
II. Figure 4 shows the energy distribution in the 
c.m.s. of 15 shower particles whose energy was 
measured. The curve corresponds to the energy 
spectrum of the Heisenberg theory. In this case 
no discrepancy is observed between the theory 
and the experimental data. 

The inelasticity coefficient estimated from the 
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total energy of the charged shower particles and 
of the neutral mesons (with the exception of par­
ticle No. 7), taking all the possible fluctuations of 
the primary-particle energy into account, is 
0.10-:: ~:~ in the c.m.s. Assuming particle No. 7 
to be secondary, its energy can be estimated by 
assuming that the mean transverse momenta in 
the internal and external cones are equal. The 
value of the average transverse momentum P1. of 
shower particles contained within the median angle 
is 0.9J.Lc (without particle No.7); for the external 
half of the shower particles, this value is 1.4J.Lc 
( J.L is the pion mass). Such an estimate gives a 
value of ...., 6 8 Bev for the energy of particle No. 7. 
In this case K...., 0.15. 

Let us note that if we assume the distribution 
of the generated mesons to be isotropic in the 
c.m.s., we can estimate the inelasticity coefficient 
from the angle .of the cone of the shower particles~ 
This value is K = 0.07. Consequently, the coeffi­
cient of inelasticity ranges from 0.010 to 0.15. 

Table III presents, for comparison with the ex­
perimental data, the total number of particles N, 
the average energy of the mesons in the c.m.s., 
and the inelasticity coefficients as given by the 
Landau and Heisenberg theories. The average en­
ergy of the shower particles in the c.m.s. is de­
termined by using 15 particles. In the Landau 
theory, the fraction of the energy transferred by 
the mesons is close to unity, since the nucleons 
that participate in the collision are not separated 
in any manner after the collision, and have an en­
ergy close to the average value. The calculation 
was made for an energy of 5,000 Bev. It follows 
from the table that the experimental values are 
in better agreement with the Heisenberg theory. 

TABLE III 

E xperiment 

rom Heisen-F 
b erg's theory 

rom Lan-F 
d au's theory 

..... 
0 
... ., 
.a 
8 "' g~ 
- u "'-~ c;t ... ~ 
24 

18 

14-15 

..... 
0 

» 
llllfli 
:;; El c . ., u 
., c 
hl)·~ 

"'"'~ t § ~ 
~ ·o.£9, 

0.5 

0.6 

6.7 

..... 
0 

2» c::.-:: 
·0~ 
-~"' ::::"' .,_ 
0 ., u.s 

0.10-0.15 

0.1 

"'1 

Inasmuch as the energy spectrum in the c.m.s. 
can be approximated by a power law ( see Fig. 4), 
it is possible to estimate the energy of the pri­
mary particle from the relation 'Yc = 0.5/81/2• 
which yields E 0 = ( 1803 ~m> Bev. This problem 

is discussed in detail by Takibaev. 7 

If one assumes8 that the observed shower par­
ticles result from a collision between the incident 
nucleon and a nuclear "tunnel" of varying length, 
then the number of the nucleons in the tunnel is 
determined by the values of the median angle 8 tj2 
and the number of shower particles ns. An anal­
ysis of this shower leads to the conclusion that the 
number of nucleons in the tunnel should not exceed 
2. This is probable also because the excitation 
energy of the residual nucleus is very small (the 
total energy of the gray and black tracks is 220 
Mev). The investigated shower can therefore be 
considered as produced in a nucleon -nucleon col­
lision. If particle No. 7 is one of the colliding nu­
cleons, the principal fraction of the energy, in the 
laboratory system, should be carried away by the 
neutron with which the collision took place. 

3. SOFT COMPONENT ACCOMPANYING THE 
SHOWER 

To study the soft component accompanying the 
given shower, we scanned the volume of the emul­
sion within a cone making a half-angle 0.15 radi­
ans with the shower axis. The scanning was per­
formed with a total magnification 60 x 1.5 x 20. 
In the volume scanned we found 10 electron-posi­
tron pairs (for nine of these, the distance from 
the center of the star is indicated in Table IV) 
and one trident, the data for which are indicated 
in Table V. 

To separate the bremsstrahlung electron-posi­
tron pairs from the pairs produced by y-quanta 
from the decay of the 7!'0 meson, we employed the 

HI 
I 

2' I 
I 
I 

1 ~ .1111 I .1. I I I I .I I u 
U 2 4 5 8 10 fZ til 15 18 20 22-ID"3rad 

Fig. 5. Number N of electron-positron pairs as a function 
of the angular distance u to the nearest electron track. 

criterion proposed in Ref. 9. We plotted (Fig. 5) 
along the ordinate the number of pairs as a func­
tion of the angular distance u to the nearest elec­
tron track of the previously-formed electron-pos­
itron pair. The pairs for which u < 3 x 10-4 ra­
dians were attributed to bremsstrahlung, and those 
with u > 5 x 10-4 radians to pairs directly con­
nected with the decay of the 7!'0 mesons. Accord­
ing to this criterion, pair No. 10, produced32,800J.L 
from the center of the shower, is a bremsstrahl­
ung pair. The remaining nine pairs are produced 
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TABLE IV 
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Distance of 
pair from 
center of 
star, r, ~ 

775 

1155 

4290 

8820 

9875 I 
I 

15700 

19550 

19650 

20800 

~I' rad 
ai, rad 
Ei, Bev 

Pair energy, de-
termined from angle 

of divergence 
without accounting 
for Coulomb scat-

tering, E 1, Bev 

7 7 +2.5 
. -2.6 

22.5 =!=2~j 

27 5 +49.3 
. -10.4 

+1 
8.7- 2.1 

14.3 =!= ~ 

15.6 =!= t~ 

0 8 + 0.1 
. -0.3 

1 4 + 0.1 
. - 0.2 

8 5 + i.O 
. - 2.0 

Primary 
electron 

0 
-

6,4±1.2 

by y-quanta from the 1r0-meson decay. 

Energy of each 
Pair energy, de-

termined from the 
electron of the Pair energy, de- angle of diver-

pair, determined termined from Cou- gence with allow-
from the Coulomb lomb scattering, ance for the Cou-
scattering, €:1 and E 2 • e:1 + €:2, Bev lomb scattering, 

82, Bev E,, Bev 

2.6±0.6 6.4±1.3 5 +11 
3.8±0.7 - 1 

8.8±4.4 14.8±5.9 16 + 5 
6.0±1.5 -2 

5.6±2.1 17.3±7.9 35 +10 
11. 7±5.8 -9 

1.8±0.4 5.3±1.0 8 + 8 
3.5±0. 7 -1 

I 

I 
1. 7±0.3 2.6±0.5 1.0±0.2 

3.0±0.7 17.8±6.4 30 +50 
14.8±5. 7 -18 

0.20±0.05 0.63±0.15 0.43±0.10 

0.27±0.04 0.81±0.14 0.54±0.10 

0. 78+0.10 2.1±0.3 4 + 8 
1.w±:o.2o -1 

TABLE V 

First electron Second electron I Third electron 

(3.5±1.3)·10-3 (3.8±1.3)·10-3 (4.3±1.3)·10-3 
2.4·10-S 1. 2 ·10-3 1.2-10-3 

0.5±0.1 1.3±0.3 1.4±0.3 

Knowing the number of primary electron-posi­
tron pairs accompanying this shower, and using 
the law of radioactive decay, it is possible to cal­
culate the expected number of 1r0 mesons.9• 10 This 
number is determined from formulas 

of the 'Y quanta in the photoemulsion (for the Ilford 
G-5 emulsion, A= 37.5 mm), p is the average 
range of the 1r0 mesons prior to decay in the photo­
emulsion. The average range of the 1r0 mesons de­
pends on the energy, but p is much less than A 
and consequently the error in the determination of 
the average energy of the 1r0 mesons is almost in­
significant in the calculation of the function f ( r). 
Starting with a resultant average energy E~0 = 15 
Bev and a lifetime of 2 x 10-15 seconds for the 1r0 

meson, we find p = 651J.. Using formula (13) for 
three values of r, we found the ratio of the num­
ber of the neutral 1r0 mesons to the number of 

N "' = N1f (r) /2, (13) 

f(r)= (14) 
(1- e -,IP) __ 'A_ (e-rJA. _ e-r/p ) 

'A-p 

where N 1 is the number of 'Y quanta that decay at 
a distance r, A is the average conversion length 
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charged shower particles, R = n11/ns. For dis­
tances r of 8, 16, and 24 mm from the start ofthe 
shower, R is 0.49, 0.45, and 0.59 respectively. 
The mean value is R = 0.54 ± 0.18; this corre­
sponds to eight 1r0 mesons. 

Several methods for determining the energy of 
the electron-positron pairs are described in the 
literature. We estimated the energy of the pairs 
by three methods: 

1. From the angle between the electron and the 
positron of the pair, 11 disregarding the effect of 
the Coulomb scattering. These data are given in 
Column 2 of Table IV. 

2. From a direct measurement of the multiple 
Coulomb scattering of the electron and the posi­
tron. These measurements were made by the pro­
cedure described in Sec. 1 of this article. The en­
ergy of each electron and positron of the pair, and 
the energy of the entire pair, are listed in Columns 
5 and 6 of Table IV. 

3. From the angle between the components of 
the pair, taking into account the Coulomb scatter­
ing. 

According to the work by Lorman, 12 the deter­
mination of the energy directly from the diverg­
ence angle can be used for an estimate of the pho­
ton energy not greater than 0.5 Bev. In this case 
the divergence angle of the electron and the posi­
tron can be measured at distances :::: 100 IJ. from 
the point of pair production. At such a distance, 
the Coulomb scattering can be disregarded. For 
high energies, the divergence angle can be meas­
ured reliably at substantially greater distances 
from the point of pair production, and the contri­
bution of the Coulomb scattering cannot be neg­
lected. Unlike in Ref. 12, in this work we as­
sumed equal distribution of the energy between the 
electron and the positron, and employed for the 
rms divergence angle e a formula which takes 
into account, along with the Coulomb scattering, 
also the initial divergence of the components of the 
pair: 

(15) 

Here me is the mass of the electron, E'Y the en­
ergy of the -y-quantum producing the pair, k the 
constant of the Coulomb scattering, and t the dis­
tance from the point of the pair production. 

The first term of the right half of Eq. (15) is the 
r .m .s. divergence angle of the pair, calculated in 
accordance with Stearns .13 The second term is the 
r.m.s. divergence angle of the pair due to the rel­
ative Coulomb scattering of the pair components. 
Using (15), we plotted a family of curves for dif-

ro"Z; 'fz·!0"3rad 
5 

5 
0 

0 

0 

0 10 20 .JO 40 !U 50 70 BU QO 100 
t(IOOfi} 

Fig. 6. Rms angle between the electron and positron of a 
pair as a function of the distance t to the point of pair pro­
duction. 0-pair No.1, •-pair No.2, D-pair No.3, •­
pair No.4, 6-pair No.6, .t.- pair No.9. Numbers on the 
curves represent Bev. 

ferent energies ( Fig. 6). The ordinates represent 
the r .m .s. divergence angle, as a function of the 
distance from the point of pair production, in units 
of 100 IJ.. As can be seen from Fig. 6, most pairs 
are characterized by an undervalued angle at dis­
tances close to the point of production. This is 
probably due to the fact that at these distances, by 
virtue of the shrinkage of the emulsion during de­
velopment, it is impossible to take into account 
the divergence. of the pairs in depth. This method 
was used by us for pairs with energy ~ 3 Bev. 
The measurement results are given in Column 6 

of Table IV. 
From the energy distribution of the -y-quanta 

it is possible to determine the average energy of 
the 1r0 mesons, E7ro ::::. 2E'Y. Calculation of the av­
erage energy of the 1r0 mesons from Columns 3 
and 5 of Table IV yields accordingly 

-- +18 --En• = 24_6 Bev and En• = 15 ± 3 Bev. 

The average energy of the charged shower parti­
cles is 9 ± 3 Bev. Assuming that all these parti­
cles are pions (and this is confirmed by the fact 
that R ~ 0.5), a comparison with the average en­
ergy of the 1r0 mesons indicates that the estimate 
of the energy of the -y-quanta by method 1 gives a 
poorer agreement than that of method 2. 

Obviously, the most reliable method for deter­
mining the energy of the pairs is the measurement 
of the mutliple Coulomb scattering of the electron 
and positron. Unfortunately, this method cannot 
always be applied. When the energy of the pair is 
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small ( < 1 Bev), then, as a consequence of the 
considerable divergence angle of the electron and 
the positron, the length of the track is, as a rule, 
too short for the application of method 2. On the 
other hand, in the most cases, at electron ener­
gies > 30 Bev, measurement of the Coulomb scat­
tering is impossible. Exceptions are pairs with 
tracks ~ 4 em long within the limits of the emul­
sion. 

It is advisable to employ method 1 at energies 
< 1 Bev and method 3 at energies > 30 Bev. 

A trident was formed 19,355~-t from the start 
of pair No. 1. True tridents satisfy the following 
criterion 10 

where ei is the angle that the i -th electron track of 
the trident makes with the continuation of the primary 
track; ai is the average angle of multiple scat­
tering (including the Coulomb and all other types 
of scattering) of the i-th electron. It follows from 
Table V that this criterion is satisfied here, 

On the other hand, according to the plot ob­
tained by Kaplan and Koshiba, 10 the probability that 
this is a bremsstrahlung pair, less than 0.2~-t away 
from the primary electron track, is nearly 8%. 
These circumstances make it possible to assert 
that the trident is a true one. The total length of 
all electron tracks in the reviewed band is 25 em. 
Consequently, the average length of formation of 
the trident at an energy of 6 Bev is on the order of 

25 em, which is in agreement with the Bhabha 
theory .14 
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The GeYfand-Iaglom field equations are extended to the general theory of relativity. 

To obtain a generalized wave equation for a field 
in general covariant form, one must define covar­
iant differentiation of a generalized wave function 
describing particles with arbitrar:y spin. GeYfand 
and Iaglom, 1 Dirac, 2 and Fierz and Pauli3 have 
studied the generalized wave equation in the spe­
cial theory of relativity. In the present article, 

their theory is extended to the general covariant 
form. 

1. SEMIMETRICS AND SEMIMETRIC REPRE­
SENTATION 

We introduce the metric gik in space-time 
with the aid of the asymmetric matrix 11 A.i(a) n 


