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Mathieu equation fall off exponentially indicate 
that the reduction of the discontinuities with E 

for the case of an analytic function K 1 ( k2) is ex
ponential. 

The author wishes to take this opportunity to 
thank I. M. Lifshitz for a discussion of the results 
and A. Ia. Povzner for illuminating remarks con
cerning the mathematical aspects of the problem 
considered herein. 
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IT is known that it is very difficult to calculate 
the lateral-distribution function of the soft com
ponent of extensive atmospheric showers withal
lowance for the cascade processes and for the 
ionization losses. However, at small values of r, 
the principal role is played by high-energy parti
cles, for which the ionization losses can be neg
lected. In the works by Pomeranchuk1 and Mig
dal2 the lateral distribution function of electrons 
with energies greater than a given value has been 
calculated for small r, with the ionization losses 
neglected* 

N(t, E, r)~llr2-s, 

and with the parameter s determined from the 
condition 

*The symbols used here are the same as in the book by 
Belen'kii.(Ref. 3). 

(1) 

-A~ (s) t = In (E 0 I~)- In (R I r) 
(the same result was obtained by Nishimura and 
Kamata4). 

Let us determine the photon density corre
sponding to such an electron distribution. For 
this purpose we use one of the Landau equations 
( see Ref. 5) : 

ar(t, E, r, 6)latt-6al'(t, E, r, 6)lar 

00 

= -:>01' (t,E,r,6) + ~ P (t, E', r, 6) 'f'rad(E', E) dE', (2) 
E 

where 'Prad ( E', E) is the probability that an 
electron with energy E' will radiate a photon with 
energy E, r is the radius vector in the trans
verse plane, and 6 is the projection of the direc
tion of motion of the particles on this plane. 

To solve our problem it is quite enough to put 
<Prad ( E', E) = 1/E. Then, integrating over all 9, 
and also over the azimuth in the plane perpendic
ular to the axis of the shower (taking account of 
the symmetry of the problem in the last equation), 
Eq. (2) can be rewrittent 

aNr(t, E, r)lat =-:>0 Nr(t, E, r) + N(t, E, r)IE.(3) 

We assume for N (t, E, r) the expression given 
in Ref. 3 

N(t, E, r)=e',(s)tEt;8 (l-(rEIE~<)2-s]lr2-s(2-s). 

A solution of Eq. (3), with boundary conditions at 
t = 0, NB = 0, is 

eA,(s)t _ e-cr,t Et;8 [1- (rE j Ek)2- 8 ] 

Nr (t E r) ~· . 
' ' Al{s) + "o r2 -s (2- s) E 

This expression is correct for Ek/E 0 < r < E/Ek. 
. Nt(t > E r) 

Let us now determme the ratio ' ' , 
N (t, E, r) 

where Nt(t, > E, r) is the number of photons 
with energies greater than the given value. Tak
ing it into account that at a fixed value of r the 
particle energy E cannot be greater than Ek/r 
( see Ref. 3), we obtain the following value for N 1: 

N1 ~In (Ek IrE) I r2-s. 

Let us note that in the derivation of Eq. (3) we 
used the condition rE/Ek « 1, which deter
mines the boundary of applicability of formula 
(1). Thus, we obtain 

(4) 

(5) 

tIt can be shown that for our problem it is possible to 
neglect the term containing the derivative with respect to r. 
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This result is in good agreement with the data 
given by Moliere6 for rE/Ek « 1. 

By way of an example it is easy to calculate 
that for E = 108 ev, at a distance of 1 m from the 
axis of the shower and at a primary-electron en
ergy of E 0 = 1014 ev, we have N1/N ~ 7-8-. This 
effect can be explained by the fact that the high
energy electrons located near the shower axis are 
accompanied by a greater number of photons. For 
distances r :=: Ek/E it is necessary to take ioni
zation losses into account. 

In conclusion I express my gratitude to I. L. 
Rozental' for advice and aid in this work, and also 
to I. P. Ivanenko for useful discussions. 
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IT was shown by Bogoliubov, Logunov, and the 
author 1 that for those processes in which IJ., e, 
and v particles participate on par with strongly 
interacting particles, the anti-Hermitian part of 
the amplitudes expressed through the action of 
such weakly-interacting particles is equal to zero 
to first order in the weak-interaction constant C. 
This simplifies considerably the consequences of 
the dispersion relations as well as their form. 
Namely, the dispersion relations lead in this case 

to the statement that the amplitude for the proc
ess depends polynomially upon the sum of the 
4-momenta of the weakly interacting particles 
(for decay, upon the difference), while the poly
nomial coefficients depend only upon the momenta 
of the strong-interacting particles. If as usual, 
the interaction Lagrangian does not contain deriv
atives of the fields, then the amplitudes are inde
pendent of the momenta of the weakly-interacting 
particles. It is easy to consider similarly proc
esses in which only weakly-interacting particles 
participate ( for example, the decay of the IJ. 
meson). The causality principle leads in this case 
to a Lagrangian which is local in all the fields, and 
the dispersion relations lead to the statement that 
the amplitude depends only polynomially upon the 
momenta. 

It is worth noting that the weak interaction cases 
allow simple analyses on the basis of dispersion 
theory. For example, the wide spread opinion that 
in order to obtain the dispersion relations it suf
fices to apply the principle of causality formulated 
through the vanishing of the probability current 
commutator of space-like points, is easily seen to 
be incorrect. 

Indded, to first order in C, the probability cur
rent commutator for weakly-interacting particles 
is zero over all space· for any Lagrangian includ
ing a non-local one. Generally, non-local Lagrang
ians do not lead to polynomial dependence. Con
sider, for example, the Lagrangian: 

L (x) = ~ K W) rp (x + ~) rp (x- ~) ~ (x + ~) ~ (x- ~)d~. 

Applying to it perturbation theory, we obtain the 
following expression for the scattering amplitude: 

s (p,q; p',q') =a (p+q-p'- q') K ((q + p)2), 

where q, q' are the momenta of the scattered 
particles, and p, p' are the momenta of the scat
terers. 

In this fashion, the dependence of the amplitude 
upon the momenta is determined from the kernel 
of the interaction Lagrangian and, in general, is 
not polynomial. Note that in deriving the disper
sion relations, Goldberger et al.2 also make use of 
time-ordered operators, in addition to the causal
ity principle in the form of a commutator. These 
two conditions are combined in the generalized 
formulation of the principle of causality, and the 
formulation now proves sufficient to obtain the 
dispersion relations. From the example of weak 
interactions, it is easy to verify that the disper
sion relations may similarly arise in certain non
local interactions. Consider for example the 


