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THE electronic paramagnetic resonance spec­
trum for the Cr +++ ion in synthetic ruby ( Al20a) 
has been investigated earlier at 9000 and 12000 
Mcs.1- 3 We have carried out a more complete 
investigation of this spectrum at 37,860 Mcs. 

In the synthetic ruby crystal the cr+++ ion 
(ground state 4F, and spin S =%) is in an elec­
tric field of trigonal symmetry. This field splits 
the lowest electrical level of the ion into two sub­
levels which are separated by 0.3 8 em - 1• The 
behavior of the electrical leveis in the presence 
of an external magnetic field is given by the spin 
Hamiltonian4 

;ft = D [S~- 1/aS (S + I)]+ g 11 ~lfzSz 

+ g_j_~ (HxSx + HySy) + ASzfz + B (Sxfx + Syfy)· 

The fine structure was studied in a synthetic­
ruby single crystal with a chromium dilution of 
1: 1,000. The lines were measured at two orien­
tations of the crystal in the external magnetic 
field: (1) with the trigonal axis Z II H, and (2) 
with the trigonal axis Z .1 H. 

In the first case three absorption lines were 
observed; these correspond to transitions between 
levels with the following values of Mz: 

I) - 3/2 +--> - 1/2, 2) - 1/2 "-"" + 1/ 2 , 3) + 1/2 <--+ + %· 

In the second case the energy states E 1, E2, E3, 

and E4 are a mixture of states with different Mz· 
In all, six absorption lines were observed; the 
first three lines have intensities two orders of 
magnitude smaller than the other three. 

The constants in the spin Hamiltonian deter­
mined from the lines were as follows: 

D = -0.1912 +O.OOIOcm"'; g 11 = 1.982+0.002; 
g_j_ = 1.979 ± 0.009. 

The positions of all lines were calculated using 
these values. The agreement between the exper­
imental values and the calculated values is good 
( cf. table). The sign of D is determined from a 
measurement of the relative line intensities at 

T = 4.2° K. We may note that at this temperature 
it is easy to saturate the lines. An estimate of the 
spin-lattice relaxation time T 1 indicates that this 
quantity is of the order of 10-2 sec. 

. . I H ' I H 1' Trans1t1on exp ca 
Oersted Oersted 

Parallel orientation 

- 3/2 +-~ _ ~~. 1 9510 I 9510 
- 1/2 ~ + 1/2 13650 13650 
+1 / 2 +-~ + 3!2 - 17790 

Perpendicular orientation 

E1 +--+ e:4 4293 4296 
Sg -+---+ E:4. 5553 5557 
e:l +----+ e:2 7620 7627 
e:?.~e:4. 11595 11595 
e:a~e:2 13400 13398 
e:1 +----+ e:a 15710 15697 

The hyperfine structure was investigated in a 
sample containing 95 per cent of the Cr53 isotope; 
the dilution was 1: 10,000. The hyperfine struc­
ture was resolved only for the -! - +! line in 
the parallel orientation and the E2 - E3 line in 
the perpendicular orientation. There are four 
components, corresponding to the different pro­
jections of the nuclear spin (I = %) . The com­
ponents are not equally spaced; the distance be­
tween the two inner lines is less than one-third of 
the distance between the outer lines. The unequal 
spacing may be attributed to a weak line at the 
center of the spectrum, due to the even chromium 
isotope in the sample. 

The fine-structure splitting constants A and 
B were determined: 

I A I= (16.8 + 0.04)·10-4cm"1 ; 

I B I= (16.8 +0.06) .J0-4.cm"1 

The fact that these values are the same indicates 
that the hyperfine structure is essentially iso­
tropic. 

The values found in the present work for the 
constants in the spin Hamiltonian for cr+++ in a 
synthetic ruby single-crystal are in good agree­
ment with the values reported in Refs. 1 - 3. 

The authors are indebted to Professor A. I. 
Shal'nikov for help in carrying out the low tem­
perature experiments. 
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IN Ref. 1 we have given the equation of motion for 
an electron which obeys the dispersion relation 
E (k) = ~Aneikn in a magnetic field (H =Hz): 

] An exp {i (k2n2 + k3n3)- i :rn; } f ( k2 - n~) = Ef(k2). 

n -cxo ao (1) 

It is assumed that E = .../ a 1a2/ a 0 « 1 (a~ = ti 
x c/ eH; the ai are the lattice constants). In Ref. 
2 solutions of this equation were investigated for 
open periodic trajectories. In the present note we 
verify the assertion made in Ref. 2 concerning the 
exponential smallness of the breaks in the contin­
uous energy spectrum in the case in which the 
function K 1 = K 1 ( k2) (the equation of the trajec­
tory, i.e., the intersections of the surface E (k) 
= const. with the plane k3 = const.) is analytic. 

It will be assumed that K1 is large enough 
everywhere (the other cases are considered in 
Ref. 2) so that the quasi-classical approximation 
can be used, that is, we write 

(2) 

Solution of this equation is much more difficult 
than solution of the Schrooinger equation because 
Eq. (1) is a difference rather than a differential 
equation. However, the general properties of the 
solution are the same in both cases. The following 
expressions are obtained in the first four approx­
imations: 

\ { (P'Q)' 1 QP'• Q" Rx~} . 
tf'3 = ~ - P 4P +. 8P3 + SP + 24P dx' 

= 'P;Q- - 1 {6R (Cll' 2+ ") + 3R' '+ 3R.P' 'p-1 - 3R " tp4 2P 24P • 2 tf'2 tf'2 tf'2 . tf'2 

I 1 " 1 R'P' RP' 2 RP"} 
I 2' R + 2 ----p- + p2- 2P . (3) 

Here we have introduced the notation 

P=aE;ax1 , Q=a2Ejaxi, R=a3Ejax~, (4) 

where K 1 and k2 are measured in dimensionless 
units (by K1 we are to understand K1a 1 and by 
x we are to understand k2a2) • 

Just as in the Schrooinger equation, the quanti­
ties ~n are total derivatives and since P, Q, R, 
are periodic in k2, this same property is char­
acteristic of the even approximations CfJ2• cp4, ••• 

Consequently, if Eq. (2) is written in the form 

the modulus p will be a periodic function of k2 
(while the phase cp is an integral of a periodic 
function and does not change sign) . 

(5) 

When displaced by one period, (5) should be 
multiplied by eiP, where eiP is ± 1 at the bound­
ary of the allowed energy intervals. This locates 
the discontinuity at once. Keeping the first two 
approximations cp1 and CfJ2 ( corresponding to the 
usual quasi-classical analysis), we have: 

X 

f (k2) = p-'/, exp {- is - 2 ~ x1dx}. 
0 

The condition eiP = ± 1 = ebm obviously means: 

(6) 

[ S is the area bounded by the curve K 1 ( k2 ) in one 
cell]. Thus the center of the allowed interval is 
determined from the same relation that applies 
for the discrete levels in the case of closed tra­
jectories: 

(7) 

The width of the discontinuities can be determined 
from the usual dispersion equation: 

f (2rr I a2) + f (- 2rr I a2) (8) 
cos p = 2f (0) ' 

which follows from the relation f ( k2 ± 21!' / ~) 
= eiP f ( k2). Since p the modulus of the function 
in Eq. (5) is periodic, Eq. (8) is of the form 

cos p = cos { s-2tp1 (2rr I a 2)- s2tp3 (2~r I a 2) 

+ s6tp6 (2rr I a2 ) - •• ·} • (9) 

This equation can always be solved. It shows that 
the discontinuities fall off with E faster than any 
finite power of E. The results of Ref. 2 and the 
well-known fact that in the discontinuities in the 


