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The problem of the polarization of the Cerenkov radiation from a magnetic moment moving 
in a ferrodielectric material is treated by the methods of quantum electrodynamics. Calcu­
lations are made of both the part of the radiated intensity accompanied by flip of the spin 
( ss' = - 1) and the part of the intensity emitted without spin-flip ( ss' = + 1). It is shown 
that the radiation is composed of a polarized part (which vanishes at the threshold, cos e = 1) 
and an unpolarized part (which does not vanish at the threshold). The unpolarized part of 
the radiation is accompanied by spin-flip. 

The energy losses are treated by classical methods, and the separation of the losses into 
Cerenkov loss and ionization loss is indicated. 

THE problem of the polarization of the Cerenkov 
radiation of a charge in a dielectric has been dealt 
with by Sokolov and Loskutov, 1 who have shown 
that the radiation is partially polarized and does 
not vanish at the threshold; this last fact is due to 
the presence of the spin of the electron. It is not 
hard to show that in the case of the motion of a 
charge through a ferrodielectric material one gets 
for the intensity radiated per unit length the for­
mulas 

Wmax 

w3 = ~ ~ tL(w)w{n:;::: (1-n-2 ) + (1-cos2 6)}dw, (1) 

(2) 

where W3 and W2 are the intensities respectively 
in and perpendicular to the plane At"k) and n = 
( E!-.L )1/2. .1' 

Comparing Eqs. (10) and (11) J~~ef. 1 with 
Eqs. (1) and (2), we see that inclusion of the effect 
of the magnetic susceptibility of the medium does 
not change the nature of the polarization of the ra­
diation in the dielectric. 

1. POLARIZATION OF THE CERENKOV RADI­
ATION OF A MAGNETIC MOMENT 

(a) As is well known, the operator for the inter­
action energy of a magnetic moment IJ.o and the 
electromagnetic field in a medium is given by 

W = [L0Pa (aB) + tLoP2 (aE), (3) 

where p3, p2, and u are Dirac matrices. 
The expression for the vector potential A of 

the quantized transverse electromagnetic field in 
a medium characterized by the constants E ( w) 
and J..L ( w) can be written in the form ( cf. Ref. 2) 

A = L -'/, ~ (27tc" 1i / x)'l• [a exp (- ic' xt + ixr) 
)( 

+a+ exp (ic'xt- ixr)], (4) 

where c' = c/( EJ..L ) 1/2, c" = c' J..L; tiK is the momen­
tum of a photon; and the amplitudes a and a+ 
obey the commutation relations 

In particular, when there are no photons in the 
initial state (as we shall assume in what follows) 
we can set 

To study the polarization of the radiation we re­
solve the amplitude A of the vector potential into 
components ( cf. Ref. 3) which characterize defi­
nite states of polarization: 

a = a2 + aa = ~2q2 + ~aqa. 
~2 = [xokol/Vl- (xoko)2, ~a= [xo~2] (7) 

in the case of linear polarization, and 
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a = a1 + a-1 = ~1q1 + ~-1q-1, 
y2~" = ~2 + i/.~3 , /..=I, -1 

(8) 

in the case of circular polarization. Here ~e 0 is 
a unit vector in the direction of " and k 0 is a 
unit vector along the direction of motion of the 
magnetic moment. In Eqs. (7) and (8) the quantum 
part of the amplitudes satisfies the relations 

qp qJ = 0• q1qf = 0ii'; j, r = 2, 3, I, -I. (9) 

Using the fact that 

B =curiA, E = _ _!_ aA 
c at ' 

and also recalling the absence of photons in the 
initial state, we find for the interaction energy op­
erator w+ ( cf. Ref. 3) 

wt =- i[LoL-'1'] (2r.c"1L I x)'l· exp {i (c'xt- )(f)} 

)( 

X {r3(a[xatl) + fxp2(aat)}. (10) 

By the use of the methods of perturbation theory it 
is not hard to find ( cf. Ref. 4) the probability of 
emission of radiation by the magnetic moment: 

(11} 

where 

R1 =- i[L0L _,, (2occ"1L I x)'l• b'+ {ra (a [)(at]) + ~ xp2 ( aat)} b, 

k, K = (k2 + k~) 1/2 and k', K' = (k' 2 + kh 112 cor­
respond to the magnitudes of the momenta (tik, 
tik' ) and energies ( ctiK, ctiK' ) of the magnetic 
moment respectively before and after the act of 
emission. Calculating out the required matrix 
elements ( cf. Ref. 5, Sec. 21) to find Wj by Eq. 
(11), we get the expression 

C[.L~ (' x2 

W i = io1t ) nz o (K' + xI n- K) d3x 

{( , kk' k~ ) [ ( , (kk') ) 
X A, 1- ss KK' + KK' 1- ss kiT 

, (k [ ~oa 1]) (k' [ ~oa ;n] 
+ 255 kk' 

c'2 ( , kk' k~ ) [( , (kk')) , (kai) (k'af) J +co- I -58 KK'- KK' 1 -55 kF + 255 kk' 

+ 2 ~~ ( s;- 5' 'f) ( k!' (5k'k- s'kk')[ [)(0aj] at])}, 
(j = 2, 3), (12) 

where s and s' are the spins of the magnetic­
moment particle respectively before and after the 
emission of the photon. 

(b) For the intensity of the radiation per unit 
length we find after averaging over the spin states 

t»max 
,. n2(ij3 

W1= !L~ ~ ~zc• tL(w){(j-2)~2 (1-cos2 6) 
0 

(13) 

(j = 2, 3); W1 = W -1 = 1l2 (W2 + W3), (14) 

e is the angle between the directions of travel of 
the emitted photon and of the magnetic moment. 

(c) For the intensities of the radiation per unit 
length in the cases of spin-flip ( ss' = - 1, upper 

I 
sign) and of absence of spin-flip ( ss = + 1, lower 
sign) we get 

Wmax 

W' 1 (+) = ~!-'-~ ~ n;;• !L (w) [} {U -2) ~2 (1-cos2 6) 
0 

+ (1- ~2)} (1- n-2) ± r {~(I+ n-2)- ~cos&} 

±r-1 {( I+ (j-3)2sin2 6- n~ticos6)(2/~-~-wnlcp) 

+ ~2 ( 1-(j- 2) 2sin2 6- nc~ti cos a)(~ -w'li I cp) (15) 

-~(cos6-nw1Ljcp)(1-~;:)}ldw, (j=2, 3), 

Wl(+)=W-d+)= 112(W~(+)+Wa(+)), (16) 

where 

r = ( 1- (2 nwtt 1 cp) cos a+ n2w2tt2 1 c2p 2)'''· 

According to Eq. (15) we get for the radiation at 
the threshold 

WJ(+)=O, (17) 

It can be seen from Eqs. (13) and (14) that the 
radiation is partially polarized and is nonvanish­
ing at the threshold; Eqs. (17) and (18) show that 
this last fact is due to the spin-flip, i.e., is a 
purely quantum effect. Also not without impor­
tance is the fact that the polarized and unpolarized 
parts of the radiation are of the same order of 
magnitude, and for 1/n < {3 < <% + 1/n2 ) 112 the 
unpolarized part even exceeds the polarized. We 
note in passing that the threshold radiation van­
ishes in the ultrarelativistic approximation, just 
as in the classical approximation. The result of 
Eq. (18), that the radiation at the threshold is fi­
nite, is a consequence of the fact that, as is shown 
by calculation [by means of Eq. (12) ], in the case 
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of absence of spin-flip the probability of emission 
of radiation at threshold is zero, but with spin­
flip it remains finite. 

The fact that the threshold radiation of a mag­
netic electron described by the Pauli equation is 
nonvanishing has been pointed by Ginzburg.6 

2. ENERGY LOSS OF A MAGNETIC. MOMENT 
MOVING THROUGH A FERRODIELECTRIC 
MEDIUM 

In dealing with the energy loss in a ferrodielec­
tric medium we shall assume that the direction of 
the magnetic moment coincides with the direction 
of motion. In this case the electric moment p 
appearing because of the motion of the magnetic 
moment is zero. The equations for the potentials 
must here be written in the form 

l::iA- (sfL I c2) 82A 18t2 =- 47tfLCurlM, 

!::icp- (sfL 1 c2) 82 cr 1 at2 = o, (19) 

where M = /.LoO (r - rg) and rg(t) specifies the 
position of the magnetic moment. 

Setting cp = 0, we have for the intensities of 
the electric and magnetic fields 

E = - _!_ oA. H 1 l A c at ' = fZ cur ' (20) 

and setting A = curl ll, where ll is the magnetic 
polarization potential, we get the equation 

(21) 

In the case of uniform motion of the magnetic mo­
ment along the z axis (for method of solution of 
such equations see, for example, Ref. 7 or Ref. 8) 
we find 

n = ~ ~ fLKo (Cr) exp {ix (z- vt)} dx, (22) 

where Ko = (7Ti/2)H0(1)(itr) and K = w/c. Here 

C = x ( 1- EfL~2)''• sign Rex (I - EfL~2)'1•, 

and ul1) is the Hankel function. 
For the energy loss Wb in collisions with im­

pact parameter larger than b we compute the flux 
of the Umov-Poynting vector through the lateral 
surface of a cylinder of radius b surrounding the 
z axis: 

W b = 4: 0 } E X H dS 

b 2 +ao 

= 7t~~ Re ~ iwfL' (w) ~'(2 1(0 (Cb) K 1 (C'b) dw, (23) 
-ao 

where dS is a surface element of the cylinder. 
In the derivation of Eq. (23) we have used the 

relations (20) and (22), and also the formulas 

Kn+l (~)- Kn-1 (0 = 2n!( n (~)I~. 

dKn (~)I d~ =- Kn-1 (~) - f Kn (~). 

In proceeding to the consideration of small values 
of the parameter b (of the order of interatomic 
distances), regarding the extinction coefficients in 
the actual expressions for E and IJ. as finite, we 
can confine ourselves to the first terms of the ex­
pansions of the Bessel functions K0 (g) and K1 (g) 
(since ltb] « 1): 

K1 = I I(' b, Ko (Cb) = {In (413.17C2b2). 

Consequently, at small impact parameters we have 
for Wb 

2 +ao 

Wb = 2~~2 Re ~ iwfL'(w) (2 1n 3_ 17~2b2 dw. (23a) 
-ao 

From this we get 

2"' 

W - flo ( 3 {[I A2f [2 I 4v2 b-1tv•~w illfL+t' !1. ms]ln3.17b26>211-ef1.~21 
0 

where 

-1 - ~2 Im €fl. 
o =tan • 1- ~ 2 Reef' 

(24) 

for the Bohr frequencies ( 1 - {32 Re E J.L > 0) and 

- 1 S2 Im efl-
ro = -7t + tan . 
T - 1 + :::1 2 Re efl-

for the Cerenkov frequencies ( 1 - {3 2 Re E IJ. < 0). 
In making the separation of the losses into Ce­

renkov and ionization losses we use the fact that 
the frequency at which the Cerenkov radiation 
breaks off ( w = Wmax) is not a characteristic 
frequency for the ionization losses. Consequently, 
the mathematical formula for the latter losses 
must not change on passage through this frequency. 
Thus we can write 

2 

W~er =- ~~- ~ w3 (Re fL- ~2 [ 11. [2 Res) dw (25) 
ReefJ-~'>1 

for the Cerenkov loss and 
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for the ionization loss. For 11- = 1, Eq. (25) gives 
the result of Eq. (16) in Ref. 6. 

In conclusion we thank Professor A. A. Sokolov 
for suggesting this topic and for a discussion of 
our results. 
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The optical properties of air at temperatures below 6,000° are considered. It is shown that 
the radiation and absorption of visible light at temperatures between 6,000° and 2,000° is due 
to the nitrogen dioxide that is formed in the air at these temperatures. This affords an ex­
planation for several optical phenomena observed in strong explosions: the glow of air in a 
shock wave at low temperatures (down to 2,000°), the separation of the shock-wave front 
from the boundary of the fireball when the temperature of the front is close to 2,000°, and the 
peculiar effect of minimum brightness of the fireball. 

A general description of the optical effects ob­
served during strong (atomic) explosions in air 
is given in an American survey.2 

A shock wave propagates from the center of the 
explosion along a trajectory which was shown by 
Sedov3 to satisfy, with good approximation, the 
self-similar law R,.... t2/5. 

So long as the amplitude of the wave is suffi­
ciently large, the surface of the front of the shock 
wave ( SWF) glows brightly, forming the so-called 

*The work was performed in 1954. For a brief communica­
tion of the results see the review, Ref. 1. 

fireball ( FB). The brightness or the effective 
temperature of the FB, taken to mean the absolute 
temperature of a black body producing an identical 
radiation flux as the FB, diminishes with time as 
the true temperature behind the SWF decreases. 
At a certain instant of time, tmin• which is on 
the order of 10-2 sec for an explosion with energy 
E ,.... 1021 ergs, the SWF stops glowing and the 
boundary of the glowing body separates from the 
wave front. The brightness of the FB now goes 
through a minimum, after which it increases again 
-the FB, so to speak, flares up again. Now the 
dimensions of the FB increase much slower, while 


