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The consequences of the dispersion relations for rr- N scattering at low energies are studied 
without resort to the use of the Low equations. Relations between the scattering lengths in va­
rious states are obtained from the values of the derivatives of the dispersion relations at k 2 = 0. 

l. In the application of the dispersion relations 
to the low-energy region it is common practice to 
go from these relations to the Chew-Low equations 
and then study the consequences of these equations .1 

In the present paper the consequences of the dis­
persion relations for rr- N scattering at low en­
ergies are studied without resorting to the use of 
the Low equations. 

Let us consider the dispersion relations for 
rr- N scattering, 2 written in the form 

D± (k) -}(1 + :)D± (0) -}(1- ~)D+ (0) 
2f2 k2 

= k2 J ± (w) ± [):•- "''~' fL2/ 2M , 

(1) 

where we have used the notation J± (w) to denote 
the dispersion integral 

1 r dw' [()"± (w') ()"+ (w')] 
J ± (w) = 47tz p ~ 7i' w'- w + w' + w ~ ' 

1'-

(2) 

w is the total energy of the meson in the labora­
tory system, and the other notations are obvious. 
We shall assume that in Eq. (1) the meson energy 
is low, w - J..L « J..L. For T/2 = k2/J..L2 - 0 both sides 
of Eq. (1) go to zero. Therefore, wishing to obtain 
the consequences of the dispersion relations for 
T/2 - 0, we turn to the values of the derivatives of 
Eq. (1) with respect to T12 at T12 - 0. In calculating 
the derivatives we use the form of the energy de­
pendence of the phase shifts as given by the "effec­
tive range theory" 3 

'tj;l+l cot o1 = 1 j a2 z+I + Pz'tj; + Q 1 "I~· (3) 

where a2H 1 is the scattering length in the £-state, 
and kb = TlbJ..L is the momentum of the meson in 
the center-of-mass system, so that 

k/kb="ihb=(1 +2wJM+fL2 /M2J'I'. (4) 

The derivatives of the second and third terms in 
the left member of Eq. (1) will have the form 
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Since 
(~)' = .!:_ ( J!:_) . (~)" 

fL 2\w' ~fL 

= _ .!:_ (L)3 . (~)"' = Jl._ (~__t:_)• 4 w , fL 8 w , ••. 

(the prime denotes differentiation with respect to 
T12 ) , we have for T12 - 0 

1 Ac f [L ) ( ) ( 1i ) ±-4-[D_(O)-D+(O)J=± 6~1+ M al-aa; l,c=[J:G 

(5) 
for the first derivative and 

1 - 1 ( . 1-t ' =fs[D_(O)-D+(O)] = =F 12 1-c 1+ M)(a1 -a3) (6) 

for the second derivative. Here, as usual, a3 and 
a 1 mean the scattering lengths in the s states 
with isotopic spins T =% and T = Y2, respec­
tively. 

The unobserved region gives for the first deriv­
ative 

2f2 I. { 1 ± c w I fL =F fL I 2M 

= ± (1 =F lL I 2M) 

and for the second derivative 

(7) 

(8) 

The index 0 means throughout that the value of the 
expression is taken for T12 = 0. If we confine our­
selves to the values of only the first two deriva­
tives at T/2 = 0, it suffices to represent D+ (k ), 
for example, in the form 

2k; D+ (k) = k {sin 21X3 _;_sin 21Xal 

+ 2 (sin 21X33 +sin 2o33) + 3sin 2o35 }, ( 9) 

where o33 and o35 denote the phase shifts for the 
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states daj2 and d5; 2 with T = a/2 and the usual 
notations are used for the phase shifts of the s 
and p states. Using Eq. (3), we write the ex pres­
sion (9) in the form 

k D (k) =I. k{_6_ +~ 
b + c A2 + A2 + " 3 X 31 X 

(10) 

where Aa, Aat> Aaa, Baa• and Ba5 denote the right 
members of Eq. (3) for the states St/2• Pt/2• Pa/2• 
da/2• and d5; 2 with T = %, and x = ~· 

For the value of the first derivative of the ex­
pression (10) at x = 0 we get 

D'-to (k) = (1 +A: 1M) {2a33 + a31 + 2~ a3 - P3a~- a~}. (11) 

Combining Eqs. (6), (7), and (11), from the value of 
the first derivative of Eq. (1) for T/2 = 0 we have 
the relation 

( 1 +A: 1 M) { 2a33 + a31 + 2~ a a - P a a~ - a;} 

).c ( ' fL \ - 2 ' 2f2).c (12) + 6 1 --r M) (a1- aa) - {k J Jo + (1- fL I 2M) , 

which establishes the connection between the scat­
tering lengths for mesons in various states which 
follows from the dispersion relations. In what fol­
lows we shall denote k2J± (w) by F ± (w). For the 
scattering of negative mesons in hydrogen, expres­
sing D (k) in terms of the amplitudes in states 
with definite values of the isotopic spin, 

3D_ (k) = 2D1 (k) + D3 (k), 

we get in a similar way 

3 (1 :rfL 1M) {2~ (2a1 + a3)- (2a~ + a~) 

(13) 

For the half-sum of (11) and (12), representing the 
scattering of 1r0 mesons by nucleons, we have 

f (1 +"A~ 1 M) {2~ (a1 + 2a3)- (a~+ 2a~) 
- (P1a~ + Paai) + 2 (a13 + a31 ) (14) 

} {f+o + f_o}' fL 2f2 ).c 

+an+ 4aaa = 2 +2M [1- (fL 1 2M)2 ] • 

Substitution of the experimental data on the phase 
shifts4 

cx3 = -(O.I05±0.0I0)'1/b, P 33 = 0.6, d3a = 0.0035, 

cx1 = (O.I65±0.0I2)'1/b, 

cx3a = 0.235 

Qa3 =- 0,8, da5 =- 0.0035, 

(the scattering lengths in the daj2 and d5j2 states 
are denoted by daa and da5 ) , with 2f2 = 0.16 (and 
2f2 = 0.19 ± 0.015 ) and zero values of the other co-
efficients, gives 

1.;;1 D~o = 0.40, 1.;;1 D'_o = O,I4 

and 
F~0 = 0.28 (0.25) Ac, F'_o = 0.24 (0.27) ),c, 

where the contribution of the unobserved region 
[- 0.173 ( 0.206) and + 0.149 ( 0.177 )] is consider­
able. For the half-sum, however, 

{ 1/ 2 (F + + F _)'} 0 = 0.26 I.e 

the contribution of the term containing f2 amounts 
to only - 0. 01 A.c. The calculation of F±o from 
the data on the total cross-sections is discussed 
in the following section. 

For the second derivative of Eq. (10) we have 

D~o (k) = Ac (I+ t) [2a~ (a3 + 2P3 ) (a3 + Pa) 

- 2a~ (Q 3+ a3P~)-3 (ai1 P31 + 2a~ P 33) + 2 (2d33 + 3d35)] 

). 

+ ~ (1 + fl.cl M)" [2a33 + a31 - P3a;- a~] 

- 4~ (1 +"A: I M) [I+ ~ (I+ t n aa. 

(15) 

By means of Eqs. (10), (6), and (8) we get from the 
value of the second derivative of Eq. (1) the second 
group of relations 

" ).c ( fL ) " 2f2),c 
D+o (k) - 12 , I + M (a1- aa) = F +o- (1 + f1. I 2M)• 

(16) 

for 1r+p scattering; . 

" ).c ( fL ) " 2f2"Ac 
D_0 (k) + IT I+ M (a1 - aa) = F -o + (1 _ f1. 1 2M)• 

(17) 

for the scattering of negative mesons; and 

1 " ' 1 " " f1. 2f2"Ac 
-2 (D+ + D_)o = -2 (F + + F-)o- M (1- (fL I 2M)•l' 

(18) 

where D: is constructed in analogy with Eq. (15). 
By using the data on the phase shifts given ear­

lier we have 

1.;;1 D-"t-o = (I+ .t) [2a;- 6a~3 P33 + 2 (2daa + 3da5)] 

f1. I M 3 11. I 4M [ fL ( fL ) 2J . + (1 +fl. I M)" (2aaa-aa)- (1 +fl./ M) I+ M I+ .M aa, 

(19) 
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3/.;1 D_0 (k)" = ( 1 + ~ )r2 (2a~ +a~) 

- 6a;3 p 33 + 4 (2dta + daa> 

11. 2a33 - (2ai +a;) 
+ 6 (2dts + das)] + M (i + 11. 1 M)S 

- (1 ~ !7 M) [ 1 + X1 ( 1 + ~ n (2al +a3). 

(20) 

Substitution of the experimental data on the phase 
shifts gives 

D~o = -0.180 ),c; D'_0 = - 0.052 Ac; 

F/2 (D+ + D'_)}0 =- 0.116 Ac; 

F+o =- 0.019 Ac (2f2 = 0.16); 

F~o= +0,016).c (2{2=0.19); 

F"-o=-0.162Ac (2{2 =0.16); 

F'_ 0 =- 0.187Ac (2{2 = 0.19); 

{ 1/ 2 (F'_ + F~)} 0 =- 0,090 I.e 
(2{2 = 0.16); 

{ 1/ 2 (F'_ + F+)} 0 = -0.085 I.e, 
(2{2 = 0.19), 

where the contribution of the unobserved region 
turns out to be very important for the first two 
values and amounts to about 35 percent for the 
half-sum. The value of the second derivative of 
F + consists mainly of the difference of the reso­
nance contribution and that from the unobserved 
region (this latter contribution being +0.188Xc 
and 0.222 Xc ). For the scattering of negative 
mesons the resonance transition is of less impor­
tance, so that the contribution of the unobserved 
region, amounting to -0.138Xc and -0.161Xc, 
is the main one. 

2. In the preceding section the values of the 
derivatives of F ± were obtained from the experi­
mental data on the phase shifts. These same quan­
tities can be calculated directly from Eq. (2) and 
the experimental data on the total cross-sections. 
This provides a more searching check on the cor­
respondence between the experimentally determined 
phase shifts and the dispersion relations. 

Having obtained F±, one can calculate the val­
ues of the derivatives by direct differentiation. But 
the differentiation of a curve drawn from experi­
mental data introduces large errors; therefore we 
shall represent the derivative in another form. For 
this purpose, being interested in the values of the 
derivatives at 7}2 -- 0, we break up the dispersion 
integral J+ (w) into three parts: 

z 00 00 

4 rc2J (w) = p (' dw' cr+ (w') + \ dw' cr+ (w') + \ dw' cr_ (w') 
+ j k' w' - w j k' N' - w j k' cu' +(I) , 

1-' z )J. 

(21) 

so that the second integral already contains no 
singularity ( z > w). We choose the value of z so 
that with the limitation to s and p states and use 
of Eq. (3) the expression for a+ (w) can be put in 
the form 

(22) 

Substituting Eq. (22) into the first integral in Eq. 
(21), we get for it 

z 

rcL (w) = ( 4rcfl P ~ d;' :;-~2 
)J. 

(ail+ 2aial 
= a;Ja (p) + (1 + 11./ M)• J~ (p), 

(23) 

where 

J ( ) = _ _!_ In[1 + (w-ll.)(z+ ll.)+pV~]' 
'" P p ll.(z-w) 

[L4J ~ (p) = -} (z2 _ [L2)'/z + + (z2 _ [L2)'i2 (wz + p2) + p4J'" (p) 

1 ( 2 2) I [V~ + z] -2[L[L-P n fl. . (23') 

For small values of p2 

V--{ 1 p2 2-z' 
lL2 J ~ (p) =- 22 - lL2 z' -1 + 6 (z' -1)2 

p4 3z'2-9z'+8 } (, z) + 40 (z' -1)3 + · · · 2 = -~ ' 
(23") 

so that (with z = 1.43 JL) 

Vz2 - [1.2 
Ja(O) =- ( ) = -2,38Ac, fl. Z-[1. 

4 - (z'- fl.2)'/z ' fi.Z (z"- fl.')'/, 
)1. J~ (0)- 3 I 2 

- ~3 In [vzz-=; + z] = 0.639 [La, (24) 

00 

a~ , (a~1 + 2a;~) 1 \ dw' cr., (w') 
J+ (tL) = --;;-J~ (O) i rc(1 + 11./ M)• J~ (O) + 47t") 7 w' -11. 

00 

, 1 \ dw' cr_ ( w') 
i 47t' .\ k' w' + 11. . 

p. 

The expression for J _ (JL) is obtained from Eq. 
(24) by the replacements 

::;+-;: ::;_, 3a; ___,a~+ 2ai; 3a;3 -> a;3 + 2ai3 , 

3ai1 ~ a;1 + 2ai1 • (25) 

From Eqs. (21) and (23) there follow expressions 
for the dispersion relations that are convenient for 
calculations in the range of energies w - JL « JL. 
Before using them to calculate the values of the de­
derivatives for 7}2 - 0, we make several remarks. 

In the second term of Eq. (22) (the contribution 
of the p waves) the change from the center-of­
mass system to the laboratory system has been 
carried out approximately. Working more exactly, 
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using Eq. (4), instead of Jp(p)/(1 +~-tiM/ we get 

where 

or 

z 
\" dw' k'3 

L~ (p) = j w'-"' (1 + 2w' I M + f1. 2 / M 2) 2 

tJ. 
z-ro 

(. 2w fl.' )-• \ R'''dx 
= I + M + M2 .) x (1 + yx)2 

{J.-0> 

(I + 2~ + Jj:J L~ (p) 

{z~ro R'''dx z-("' R'1•dx } 
= J ~ (p)- Y j 1 + yx + .\ (1 + yx)2 

tJ.-Ul (.J.-W 

= J~ (p) -yN~ (p). 

(26) 

We give the expression for Np (p) which is ob­
tained when the denominators of the integrands are 
expanded in series up to terms in y2: 

[( N• 3 \ 3 l N~(p)= 2 - 4 )zN- 16 Jn(w+2z+N). 

-3y[~ -z("'~3 -{N)-{ln(w+2z+N)J 

+ 4 2 [(. z -1 _ 7w NS + (6w2 + 1) (Ns _ 3N) 
y 6 30 6 z 4 8 

(27) 

where N = ( z2 - 1 )1/ 2 (J..t = 1 ). The last term in 
Eq. (27) gives less than 6.5 percent of the value of 
Np at p=O. Thevalueof yNp(O) itselfis0.085, 
which leads to the change from Jp ( 0) = 0.639 to 
Lp(O) = 0.554, i.e., gives a correction of about 
15 percent. Use of only the first term in Eq. (27) 
gives Lp ( 0) = 0.530, from which it is clear that 
the remaining terms give less than 5 percent. Since 
the entire contribution from J p ( 0 ) is not large, 
one can just use Eq. (23'), bringing in the first 
term of Eq. (27) as a correction. 

We shall now obtain the expressions for the de­
rivatives of F ± . For arbitrary momenta 

F~ (w) = J + (w) + TJ2 J~ (w). (28) 

From Eqs. (21), (23), and (27) it can be seen that 

(29) 

Since Eq. (28) is also correct for rrJ'-, we get 

(30) 

This last equation enables us to reduce the calcula­
tion of the derivative of F to the value of the dis-

persion integral at the single point w = J..t. The 
value of the derivative is calculated from Eqs. (30), 
(23), and (24). For z = 1.43 the contribution of 
the first two terms in Eq. (23) gives -0.026/7T for 
the s wave and + 0.0350/7T for the p waves, 
which is a very small fraction of the value F+o = 
0.28 ( 0.25) ?l.c obtained in the preceding section. 

Similarly, for the interaction of negative me­
sons with protons we have instead of Eq. (24) 

(a2 + 2a2) (a2 + 2a2 + a2 + 2a2 ) J ( ) = 3 1 J (O) + 31 n aa 13 L (O) 
- fl. 3rc "' 3rc (1 + fl. I M)• ~ 

00 00 

. 1 ( dw' c;_(w') 1 \ dw' cr+(w') 
+ 4rc2 .) ----;i' w' - fl. + 4rc2 .\ ----;i' w' + fl. · 

(31) 

z tJ. 

For the contribution of the first two terms in Eq. 
(31) we get 

1CL_ =- 0.051 + 0.012 =- 0.039. 

Here also the contributions of the s and p waves, 
which are comparable with each other, turn out at 
z = 1.43 to be tiny in comparison with the contri­
bution of the integral terms in Eq. (31), if we judge 
by the results of the preceding section. For the 
second derivative of F at arbitrary momenta we 
find 

F" (w) = 2J' (w) + Tj 2J" (w). 

For rl- 0 the second term vanishes, so that 

F~ (w) = 2J' (fl.). (32) 

Breaking J+ (w) up into parts as in Eq. (21), we 
get from Eq. (23) for the contribution of the s and 
p waves 

' N (2- z) a;1 + 2a~3 
1CL+ (fl.)=- a; 6(z-1)2 + rc(1+fl.IM)• 

X { ~ (I + ~) ++In (N + z)} ; 

00 

i \" dw' cr_ (w') 
- 4rc2 j li' (w' + f1.)1 • 

tJ. 

(33) 

(34) 

The contribution of the terms outside the integrals 
is +0.002?\.c. Theexpressionfor J'_(J..t) isob­
tained from Eq. (34) by the replacements (25). For 
1T-- p the contribution of the terms outside the in­
tegrals is - 0.002?\.c· 

3. The numerical values of the dispersion inte­
grals are 

J+ (fl.)= 6.96j41C2 = 0.176, 

J_(fl.) = 4.99J41t2 = 0.126. 
(35) 



316 L. I. LAPIDUS 

Comparison of Eqs. (35) and (30) with the previ­
ously obtained values 0.28 ( 0.25) and 0.24 ( 0.27) 
provides a further confirmation of the positive sign 
of a33 . Moreover, it follows from Eqs. (35) and 
(12) that a31 is a negative quantity, and 

for 2f2 = 0.16: D+ (0) = 0.258 Ac, a31 = - 0.115, 

for 2f2 = 0.19: D+ (0) = 0.320 Ac, a31 = - 0.080. 
(36) 

From Eqs. (35) and (13) we have as a consequence 
of the dispersion relations that 

for 2f2 = 0.16: D'_ (0) = 0.026 Ac, 

2a13 + a11 =- 0.139; 

for 2f2 = 0.19: D_ (0) = -- 0,00(4) Ac, 

2a13 + a11 = -0.208. 

On the hypothesis that a 13 = a31 it follows from 
Eq. (37) that 

for 2f2=0,16: a 11 =0.09, 

for 2f2 = 0,19: a 11 = - 0.05. 

(37) 

(38) 

It must be emphasized that it is difficult to deter­
mine the errors in the numerical values of a31 and 
au. Although the idea of a small and negative scat­
tering length a31 and a small au corresponds 
roughly to the experimental data on 7T- N scat­
tering, the value of D:. ( 0) is in noticeable dis­
agreement with the experimental data. 

For the values of the derivatives of the disper­
sion integrals we get by numerical integration 

2/+ (fL) = 0.08 Ac, 2L (fL) = 0.04 'Ac. (39) 

It is at present difficult to get results analogous to 
Eq. (36) - (38), since for this more precise data 
are needed. 

Thus the analysis that has been given by using 
infcrmation about the scattering phase shifts at low 
energies only confirms the results of Puppi and 
Stanghellini. 5 For the scattering of 7T + mesons by 
protons the dispersion relations enable us to deter­
mine from the data on at> a3 , and a33 a value of 
a31 that agrees with the experimental data, but the 
consequences of the dispersion relations for 7T-- p 
scattering cannot be brought into agreement with 
experiment. The actual disagreement at low ener­
gies is not large, as it is at higher energies. It is 
not clear just how far it exceeds the limits of the 
experimental errors in the phase shifts. 

The causes of the disagreement remain unclear. 
All kinds of isotopically noninvariant corrections 
are small. In connection with the important part 
played by isotopic invariance in the derivation of 
the final form of the dispersion relations, the pos-

sibility of an additional check on the isotopic in­
variance in the 7T- N scattering is discussed in 
the Appendix. The contribution of the 1rp mesic 
atom calls for special examination. 

In the situation that has arisen, it is very de­
sirable that additional experiments be carried out, 
and also that the experimental data be processed 
more precfsely. Experiments that could be of par­
ticular value are studies of the polarization of re­
coil nucleons, and also of the interference with the 
Coulomb scattering. 

The writer is grateful to Ia. A. Smorodinskii, 
N. N. Bogoliubov, N. P. Klepikov, A. A. Logunov, 
and D. V. Shirkov for valuable discussions, and to 
I. V. Popova for aid with the numerical calcula­
tions. 

APPENDIX 

As is well known, the unitary character of the 
S matrix, together with invariance under time re­
versal, decidedly reduces the number of independ­
ent parameters occurring in the S matrix. Re­
cently it has been shown6 that these conditions 
make it possible to reconstruct the scattering am­
plitude in the case in which only elastic scattering 
takes place, unaccompanied by inelastic processes. 

We shall now consider the unitary conditions for 
7!'-- p scattering, in which in parallel with the elas­
tic scattering there occurs an inelastic process -
the conversion of the charged meson into a neutral 
meson - and shall show how these conditions can 
aid in checking the isotopic invariance. 

We introduce the S-matrix elements 

S jl Jl 2' 111 
ik = Pik exp [ trx.;h 

( Cl!ik and p are real numbers) for a state char­
acterized by the angular momentum J and by R. = 
J + 7'2 (hereafter the indices J, R. are omitted). 
Su corresponds to the elastic scattering of the 7!'­

meson by a proton, 7!'- + p- 7!'-; S12 = S21 corre­
sponds to the exchange scattering 7!'- + p - 7!'0; and 
822, to the elastic scattering 7!'0 + n - 7!'0• 

The requirement that the matrix be unitary, 
written in the form 

(A.1) 

is easily seen to give three independent conditions: 

! Sn 12 + I s12 12 = 1 ;_ 

I S22 12 + i S12 12 = 1: 

s~1S12 + s~2s22 = o. 

(A.2) 

(A.3) 

(A.4) 

For the 7!'+- p scattering Eq. (1) gives instead of 



APPLICATION OF DISPERSION RELATIONS 317 

Eqs. (2)- (4) only a single condition, which makes 
it possible to introduce real phases. 

From Eqs. (2) and (3) we get the relations be­
tween absolute values 

I Sn [2 = I s2~ 12 = Pir = P~2 = p2 , 

(A.5) 

and from Eqs. (4) and (5) a connection between the 
phases 

(A.6) 

Consequently in this case, in virtue of the three 
relations (2)- (4) the amplitudes of the three proc­
esses, including both elastic and inelastic scatter­
ing, can be expressed in terms of three real num­
bers, which must be determined by experiment. 

We note that when one goes to a larger number 
of channels Eq. (6) remains an approximately true 
relation if the probabilities of transitions between 
channels are small in comparison with those for 
transitions within the channels ( cf. Ref. 7, for ex­
ample). 

Relations (5) and (6) can be put in another form. 
The situation here recalls that which is encountered 
when, in considering the transitions 3P 2 -- 3P 2, 
3F 2 -- 3F2, 3P 2 ~ 3F2 in nucleon-nucleon scatter­
ing, one introduces real phases and mixing coeffi­
cients.8 In analogy with this we introduce two real 
phases 0~ and oy and a mixing parameter EJ: 

sii = exp [2ia5J cos2 z1 + exp [2ia5rl sin2 s1 , 

2si; = {exp [2io~]- exp [2io~r]} sin 2s" (A. 7) 

s{i = exp [2io5J sin2 z 1 + exp [2ia}J cos2 z, 

(unlike the case of N- N scattering, here both 
o~,II and also EJ depend on £ as well as on J, 
and the EJ do not drop out of the expressions for 
the integrated cross-sections). The connection be­
between the quantities p, au, c:¥22 and 0~, o~I, EJ 
follows from Eqs. (5), (6), and (7). The elements of 
the S matrix are expressed in this way in the exact 
formulation when the existence of isotopic invari­
ance is not assumed. As is well known, under this 
further condition one has 

3si; = 2bi1 + b~1 ; 3sii = V2 (b~1 - bi1); 

(A.8) 

(bf~ = exp [ 2i0f~] characterizes the scattering 
in a state with given J and isotopic spin T ). 
From a comparison of Eqs. (8) and (7) it can be 
seen that isotopic invariance corresponds to the 
case in which EJ, not depending on J and £ 
(there remain two real parameters ) takes the 

constant value arc tan 21/l Rl 55°, if o~ corre­
sponds to 63 and o~I to 61• 

By checking these last assertions (lack of de­
pendence of EJ on J and £ and definite value of 
EJ) one has a possibility for confirming the iso­
topic invariance in the scattering of charged me­
sons. It might seem that, since the cross -section 
for elastic scattering of 1r0 mesons appears in 
Heitler's relation 

da (rr+ + p-+ r.+) + da (r.- + p-+ 1r-) 

= 2da (1r0 + p-+ 1r0 ) + da (1t- + p-+ 1to) 

the 7T - N scattering cannot be used for checking 
the isotopic invariance. Fermi has pointed out7 

that, at l~ast when one takes into account only the 
s and p waves, such a check can be carried out 
with experiments with charged mesons. From the 
results of this appendix it follows that this can be 
done with the inclusion of an arbitrary number of 
states. The check proposed here goes beyond this. 
It makes it possible to see to what accuracy iso­
topic invariance is fulfilled in each state of the 
7T- N system. 

We note a generalization of the symmetry 
pointed out by Minami9•10 to the case in which an 
inelastic process occurs in parallel with the elas­
tic process. By direct verification one readily 
finds that the unpolarized cross-sections of the 
processes in question remain unchanged if one 
makes the simultaneous replacements 

,[,[[ -+~f.ll J -+ J 
OJ, 1-'f, ~ UJ,J+'f,; SJ-'f, ~ SJ+'f,· 
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It is shown that, through the mechanism of "jumping" of the IJ.- meson from one proton to 
another, which was proposed by Ia. B. Zel'dovich, mesic hydrogen atoms convert completely 
to the ground state of the hyperfine structure during the lifetime of the IJ. meson. As are­
sult, there is complete depolarization of 1J. mesons in hydrogen, and the neutrons which are 
formed from capture of IJ.- mesons by protons via IJ.- + p = n + v will be completely polar­
ized along their direction of motion. 

THE separation between the upper ( F = 1, where 
F is the total spin of the mesic atom) and lower 
( F = 0) levels of the hyperfine structure for a 1J. 
meson in the K orbit of a mesic hydrogen atom, 
is1 

16n I Lls = 3 ~p.~Ngl ljl (0) 1 2 = 0.25 ev (1) 

( {3/J. is the IJ.-mesonic and f3N the nuclear Bohr 
magneton, gi = 2 x 2.79 is the gyromagnetic ratio 
of the proton) . 

Because of the smallness of this separation, the 
radiative transition to the lower state is extremely 
improbable ( T rad ,..., 106 sec). However, because 
of the neutrality of mesic hydrogen there is a very 
effective mechanism via which there is a complete 
transition into the lower hyperfine structure state 
during the lifetime of the IJ. meson. This mech­
anism is the "jump" of the IJ. meson from one pro­
ton to another with simultaneous transition into the 
lower state of the hyperfine structure.* Since the 
hyperfine splitting is much greater than the ther­
mal energy in collisions of a proton and a mesic 

*This was called to the attention of the author by Ia. B. 
Zel'dovich. 

atom, the process is irreversible. In the present 
paper we give an estimate of the cross section for 
this transition. 

In mesic units (e = 1, ti = 1, m/J. = 1), the 
Hamiltonian for the interaction of a meson with a 
pair of protons, including the interaction of the 
spins of the meson and the protons is 

h 1 1 1 111 
H = -- LlR - - LlR - - Ll -- - - + -

2M ' 2M ' 2 r r 1 r2 R 

( R 1, R2, r are the coordinates and 11, 12, s 
are the spins of the protons and the meson, R 

(2) 

= 1 R 1 - R2 I is the distance between the protons, 
while r 1 = I r - R1 I and r 2 = I r - ~ I are the 
distances of the meson from the two protons). We 
are neglecting the spin-spin interaction between 
the protons and between the meson and the second 
proton when the meson is at the position of the 
first proton. 

At the velocities we are considering, the rela­
tive motion of the protons is described by an s 
wave, so that the total spin is conserved. The spin 
of the system consisting of two protons and a I-' 
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up the crystals as infinitely long unidimensional or 
two-dimensional atom complexes, bound together 
by "small" forces of one nature, whereas in the 
complex itself the atoms are bound by "big" forces 
of another nature. 

6. The difference between the typical molecular 
crystals (e.g., the CH4 or C6H6 crystals) and the 
heteropolar molecular crystals (such as the NaCl, 
HgCl2 or PbS crystals) lies: (1) in the degree of 
molecularity {3; (2) in the nature of the forces in 
the molecules; (3) in the nature of intermolecular 

forces. The quantity {3 is defined as the ratio of 
the intramolecular energy ua ~ D ( D is the en­
ergy of dissociation of the diatomic molecule into 
ions) to the intermolecular energy ue per bond. 
For the substances for which {3 is given below, it 
is possible to take ue ~ 2S/l. Example: 

ERRATA 

Volume 5 

Page 

1043 

1044 

Volume 

1090 

1091 

1094 

Line 

Eq. (4) 

3 from bottom (l.ho) 

4 from top (r.h.) 

6 

4 and 5 from top 

6 from bottom 
expression for 
determinant C(y) 

7 from bottom 

Volume 7 

55 16 from bottom 

169 17 from bottom 

215 Table 

215 Table, column 
headings 

312 Eq. (8) 

313 2, r.h. col. 

692 Eqo (5) 

461 Title 

{3 = 300 ( CH4 ), 200 ( HCl), 22 ( HgCl2 ), 10 ( NaCl) 
taking l = 12 in all four cases. 
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Reads 

!:l.y = 2.87 x 10-3 em 

!::J.J. ~ = 7.2 x 10-5 radians 

2-(d, 3n); and of the I~7 cross 
section, 3-(d, 2n); 4-(d, 3n) 

p, yp, h, 1/p 

For y = 5/3, /J. has • o o 

Should Read 

W = y2 a~4 sin 2q>/2p (a11 a 44 

- a}4 sin2 3q>) 

The coefficient k:! equals 
Oo 185 x 10-3 em -i 0 

!:l.y = 3.18 x 10-3 em 

!::J.J.~ = 5.9 x 10-5 radians 

2-(d, 3n) on I~ 7 and 3-(d, 3n); 
4-(d, 3n) on Bi~g9 

PY2• 'YPY2• hy2, Y2/p 

Here /J. has o o o 
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