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and hence 

~ a~ evL = tX+ (eaLJav _ 1) evL. (A.28) 

By comparing Eq. (A.28) with (A.26), we obtain the 
desired relation between L and a' , 

aa' (v) I a"V = eaLJov - 1. (A.29) 

Equations (A.29) and (A.25) imply Eq. (A.15), and 
by Eq. (A.24) this proves Eq. (A.14). 
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The one-particle Green's function is calculated in a low-density approximation for a system of 
interacting bosons. The energy spectrum of states near to the ground state (quasi-particle 
spectrum is derived. 

1. INTRODUCTION 

IN the preceding paper1 the method of Green's 
functions was developed for a system consisting of 
a large number of bosons. The one-particle Green's 
function was expressed in terms of the effective po
tentials l::ik of pair interactions and the chemical 
potential J.l of the system. Approximate methods 
must be used to determine l::ik and J.l. In the 
present paper we study a "gaseous" approximation, 
in which the density n, or the ratio between the 
volume occupied by particles and the total volume, 
is treated as a small parameter. The interaction 
between particles is assumed to be central and 
short-range, but not necessarily weak. The first 
two orders of approximation involve only the scat
tering amplitude f of a two-particle system. But 
in the. next order (proportional to ( -.fnfS )2 ) the 
effects of three-particle interaction amplitudes 

appear, which means that practical calculations to 
this order are hardly possible. 

From the Green's function which we calculate, 
we derive the energy spectrum of excitations or 
quasi-particles, the energy of the ground state, 
and also the momentum distribution of particles 
in the ground state. 

2. ESTIMATE OF THE GRAPHS CONTRIBUTING 
TO THE EFFECTIVE POTENTIALS 

The definition of the potentials .l::ik• and the 
rules for constructing Feynman graphs, were de
scribed in our earlier paper, 1 which we shall call 
I. 

We shall estimate by perturbation theory the 
various graphs contributing to l::ik and J.l. For 
the Fourier transform of the potential U (p) =Up, 
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we assume for simplicity* Up= U0 for p < 1/a, 
and Up= 0 for p > 1/a. Then a is of the order 
of magnitude of the particle radius. 

For definiteness we examine ~20 • The graphs 
for ~02 , ~ 11 and J.1. are essentially similar. The 
first order of perturbation theory, as we saw in 
Sec. (1,7), gives ~~~)= noUp; J.1. =noVo. 

In the estimate of any graph there may appear 
three parameters - U0 and a, characterizing the 
interaction, and no. characterizing the density of 
particles in the condensed phase. The three pa
rameters can be combined into two dimensionless 
ratios, 

~ = V n0a3• (2.1) 

The quantity ~ is the usual parameter which ap
pears in perturbation theory (in ordinary units 
~ ~ m U ( r) a2/n 2 ), while {3 is a parameter of 
gas-density. 

t~f t_----{ 'J~I=fz 
l _ _j a --- 4 

a 11 

FIG. 1 FIG. 2 

The only noli-vanishing graph in second order 
is the one shown in Fig. 1a. This gives a contri
bution 

Ma~n0 ~ 0° (q +fl.) 0° (-q +fl.) U0Up+qd4q 

Substituting for G0 from 

QO(p)=(pO-eO+iop, eO=p2 j2, p p 0---++0 (2.2) 

and carrying out the q0 -integration, we find 

In the last integral the main co11tribution comes 
from q ~ 1/a, where JJ./E0 ,.... n0U0a2 = ~{32 « 1. 
Therefore 

(2.3) 

We consider next the third-order graph (1b). This 
gives a contribution 

*The letters p, q, • • . are used to denote the lengths of 3-
vectors, or to denote 4-vectors. There can be no confusion, 
because they denote 4-vectors only when they appear as argu
ments in G(p), .:£(p), etc. 

Mb ~ n~~ 0° (q +fl.) [0° (- q + (1.)]2 U0UqUp+qd4q 

~ n~U~ ~dqf(fl.-s~ + io)2 • 

The last integral, unlike the previous one, con
verges at the upper limit, and the main contribu
tion now comes from the range q ~ {ji = v'nou0 • 

Therefore 

M 2ua 1 ,;- ~<I>· •t,~ 
b ~ no o v fl. = "-'20 ~ t'· (2.4) 

From Eqs. (2.3) and (2.4) we see that M0/Ma ~ 
~ 112{3. This is a consequence of the fact that Ma 
contains an integral of a product of two factors G0, 

formally diverging at the upper limit, while Mb 
contains an integral of a product of three factors 
G0 and converges without any cut-off. In the 
graphs this difference is indicated by the number 
of continuous lines in the closed circuit formed by 
the continuous and dotted lines. The same result 
holds when the circuits form part of a more com
plicated graph. 

Thus every circuit containing more than two 
continuous lines introduces the small parameter {3, 
while circuits with two continuous lines do not in
volve {3. In the lowest order we need consider only 
graphs whose circuits are all of the two-line type. 
All such graphs are of the "ladder" construction 
shown in Fig. 2. We denote by - ir ( 12; 34) the 
total contribution from all such graphs. The first
order approximation in {3 then differs from the 
first-order approximation in perturbation theory 
by changing the potential U ( arising from a ladder 
with one rung) into r (arising from ladders of 
all lengths ) . Similar conclusions hold also for the 
higher approximations. A summation over a set of 
graphs, differing only by the insertion of ladder 
circuits into a fixed skeleton, produces a change 
of U into r. If we represent r by a rectangle, 
a.ll graphs can be constructed by means of rec
tangles and continuous lines only. In this way the 
potential U is eliminated from the problem. The 
effective potential is r. 

3.* EQUATION FOR THE EFFECTIVE 
POTENTIAL r 

We can write down an integral equation 

r (12;34) = u (1-2) o (1-3) o (2-4) 

+ i ~ u (1-2) G0 (1-5) G0 (2-6) r (56; 34) d4x5d4x6. (a.1) 

for the sum of contributions from a.ll graphs of the 
ladder type (see Fig. 2). The notations are the 

*The problems connected with [' were solved in collabora

tion with V. M. Galitskii, who was working simultaneously on 
the analogous problems in Fermion systems. 
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same as in I. We next transform Eq. (3.1) into 
momentum representation. In order to relieve the 
equations of factors of 27!", we shall use the con
ventions 

d4p = (21tf'dp1dp2dp3dp0 ; 

a (p) = (21t)' a (pl) a (p2) a (ps) a (po), 

and similarly we understand dp and 6 ( p) to 
carry factors of ( 27!" )3• We write 

f (p1P2; PaP4) a (PI + P2- Pa- P4) 

= ~ exp {- ip1x1 - ip2x2 + ipaXs (3.2) 

+ ip4x4} r (12; 34)d4xld4x2d4xad4x4, 

and introduce the relative and total momenta by 

P1 + P2 = P'; Ps + P4 = P; 

P1- P2 = 2p', Pa- P4 = 2p, (3.3) 

Then, by Eq. (3.1), r(p'; p; P) = r(PtP2; PaP4) 
satisfies the equation 

r (p'; p; P) = u (p'- p) + i ~ d4qU (p'- q) ao (P/2 + q) 

X G0 (P/2- q) r(q; p; P). (3.4) 

Since the interaction U is instantaneous, 
U ( 1 - 2 ) = U ( x 1 - x2 ) 6 ( t 1 - t2 ) , and therefore 
the points 1, 2 and 3, 4 in r ( 12; 34) must be 
simultaneous. In momentum representation this 
means that r ( p1 p2 ; p3 p4) depends on the fourth 
components only in the combination p~ + p~ = p~ + 
p~ = P0• Therefore r ( p'; p; ·p) is independent of 
the fourth components of its first two arguments 
(the relative momenta). The q0-integration in 
Eq. (3.4) can thus be carried out, giving 

~ dqOGO (} p + q) GO ( + p- q) 
( 1 )-1 = - i \ po- 4 p2- q2 + ia ' 

and then Eq. (3.4) takes the form 

f (p'; p; P) = U (p'- p) + \ dq U (P~2- q): (q::; P) 
.\ 0-q +l 

k2 _ po _ ..!_ p2 
0- 4 • 

(3.5) 

(3.6) 

Equation (3.6) cannot be solved explicitly, but 
its solution can be expressed in terms of the scat
tering amplitude of two particles in a vacuum. We 
write x(q)=(k~-q2 +.i6)- 1 r(q;p;P). Then 
Eq. (3 .6) becomes 

(k~- p'2)x (p')- ~ U (p'- q) X (q) dq = U (p'- p). (3.7) 

Let ..Yk ( p') be the normalized wave-function which 
satisfies the equation 

w- p'2) 'Yk(p')- ~ u (p'- q) 'Yk (q) dq = 0, (3.8) 

Then the solution of Eq. (3.7) may be written 

, ('Yk (p') 'f'; (q) u ) d 
X(P)= .\ k;-k2+i3 (q-p q, 

and so r ( p'; p; p) becomes 

f{ '· ·P)=(k2 - ' 2)\ Tk(p')'f';(q) U(- )d (3.9) 
p 'p, 0 p .\ k~- k2 + i3 q p q. 

We observe now that Eq. (3.8) is the Schrodinger 
equation in momentum representation. Thus ..Yk ( p) 
is the wave-function for a scattering problem with 
potential U. The scattering amplitude* f ( p' p) 
is related to the ..Y-function by 

f (p'p) = ~ e-ipr U (r) Wp (r) dr = ~ U (p'- q) Wp (q) dq, 
(3.10) 

or by 

wp (p') =a (P- p') + f (p'p)/(P2 - p'2 + ia). (3.11) 

In the first Eq. (3.10), ..Yp (r) is the wave-function 
in coordinate. space which behaves at infinity like a 
plane wave with momentum p and an outgoing 
spherical wave. The usual scattering amplitude is 
the value of f (p' p) at p' = p. We consider arbi
trary values of the arguments, so that f ( p' p ) is 
in general defined by Eq. (3.10). 

Because ..Yp ( p') satisfies orthogonality condi
tions in both its arguments, f ( p' p ) satisfies the 
unitarity conditions 

t (p'p) - r (p'p) 

= ~dqf(p'q)f"(pq)[q•-:'2+i3- q2_;2-i3l 

= ~ dqf" (qp') f (qp) [q2- ;,2 + i3 - q2- p;- i3 J. 
(3.12) 

When p' = ±p, Eq. (3.12) gives the imaginary part 
of the forward and backward scattering amplitudes. 
Since f ( -p'- p) = f (p' p ), Eq. (3.12) implies 

Im f (± pp) = ·- i1t ~ dqf (pq) f" (+ pq) a (q2 - p2). (3.13) 

For the forward scattering amplitude, Eq. (3.13) 
gives just the well-known relation between the 
imaginary part of the amplitude and the total cross
section a, Im f ( p p ) = - ipa. 

We substitute Eq. (3.11) into (3.9) and use Eq. 
(3.12). This gives two equivalent expressions for 
r (p'; p; P ), 

r (p'; p; P) = t (p'p) 

+ ~ dqf (p'q) r (pq) [ kg-q• ~ n~ + ,q2-p!-ia] (3.14) 

= r (pp') + ~ dqf (p' q) r (pq) [ k~ _ ~. + ia + q2 _ ~~2 + i3] · 

*The quantity f(p' p) differs by a numerical factor from the 
usual amplitude a (p' p), in fact f = - 4 n a. 
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expressing the effective potential r ( p'; p; P) in 
terms of the scattering amplitudes of a two-parti
cle system. 

4. FIRST-ORDER GREEN'S FUNCTION 

The effective potentials 1: ik are determined by 
special values which r takes when two out of the 
four particles involved in a process belong to the 
condensed phase. Thus two of the four particles 
must have p = 0, p0 = J.L. Each particle of the con
densed phase also carries a factor ~ . There
fore we find 

E20 (p + fL) = n0r (p; 0; 2[L); E02 (p + fL) = n0r (0; p; 2[L), 

E11 (p + f.l) = n0r (pj2; pj2; p + 2[L) 
(4.1) 

+nor (- pj2; pj2; p + 2[L). 

To obtain the chemical potential we must let all 
four particles in r belong to the condensed phase, 
and divide by one power of n0 [see Eq. (I, 3.20)]. 
We then have 

(4.2) 

Substituting into Eqs. (4.1) and (4.2) the value of r 
from Eq. (3.14), we find 

[L = nof (00) + no ~ dq i f (Oq) 1,
2 [ 21L _

1q• + i8 + ;. ] ' 
!:2o (p + fL) = nof (pO) 

+ n0 ~ dqf (pq) f'(Oq) [ 2!'- _ 1qz + i8 + :. ] • 
E02 (p + fL) = nof" (pO) 

+ no~ dq f (Oq) f* (pq) [2!'- _ ~. + i8 + :.l 
~u (p + fL) = 2nofs(++) 

+ 2no ~ dq If s ( ~ q) n pO + 2!'-- p~/4- q• + i8 

(4.3) 

In the last equation we have introduced the sym
metrized amplitude 

f s (p'p) = If (p'p) + f (- p'p)]/2. 

All the integrals in Eq. (4.3) converge at high 
momentum, even if the amplitudes are taken to be 
constant. For dimensional reasons these terms 
are of order nof2 ..fjj:. Compared with the first 
terms in Eq. (4.3), these terms contain an extra 
factor ..fDJf", which is just the gas-density param
eter (2.1) obtained by substituting the amplitude f 
for the particle radius. In first approximation we 
neglect the integral terms in Eq. (4.3) and obtain 

f! = n0f (00); E20 (p + f.l) = E~z (p + [L) = nof (pO); 
(4.4) 

The Green's function G is given by Eq. (I, 5.6), 

G (p + !-') 
pO + €~ + LU: - fl. 

(p"- (Li;:- LU:)/2]2- (o~ + (Li;: + Lti)/2- !LJ2 + L 20L 02 + i8 

(4.5) 

and after substituting from Eq. (4.4) this becomes 

p0 + o0 + 2n0f s (_ll_ __p_ \- n0f (00) 
G ( + ) . 2 2 J (4.6) p f.l = 02 2 ' ·~ , 

p -E~ T to 

with 

Cp = Jlls~ + 2nofs( ++)-not (00) r- n~ If (pO) 12 • (4.7) 

The point Po ( p ) , at which the Green's function 
G (p + J.L) has a pole, determines the energy Ep 
of elementary excitations or quasi-particles2 car
rying momentum p. To calculate Ep we must 
know three distinct amplitudes. fs (p/2 p/2) is 
the ordinary symmetrized amplitude for forward 
scattering, and f ( 0 0) is a special value of the 
same amplitude. However, f (p 0) does not have 
any obvious meaning in the two-particle problem, 
since it refers to a process which is forbidden for 
two particles in a vacuum. 

At small momenta, we may neglect the momen
tum dependence of fs (p/2 p/2) and of f (p 0 ), 
setting fs (p/2 p/2) ·~ f (p 0) ~ f ( 0 0) = f0• 

This approximation is allowed when the wavelength 
is long compared with the characteristic size of 
the interaction region, which has an order of mag
nitude given by the scattering ampfitude f0• There
fore when p < f01 we may consider all the ampli
tudes in Eq. (4.6) and (4.7) to be constant. For 
higher excitations with p ~ f01, the momentum 
dependence of the amplitude becomes important, 
and the problem cannot be treated in full generality. 
We shall examine the higher excitations (in Sec. 8) 
for the special example of a hard-sphere gas. 

Confining ourselves to the case pf0 < 1, we de
duce from Eq. (4.6) and (4. 7) 

G (p + !L) = (p0 + s~ + n0f0)/(p02 - s~ + i8), (4.8) 

with 

(4.9) 

Equations (4.8) and (4.9) are formally identical 
with the results obtained from perturbation theory 
in Eq. (I, 7 .3) and (I, 7 .4). Only the scattering am
plitude f0 now appears instead of the Fourier 
transform Up of the potential. 

Equation (4.9) shows that quasi-particles with 
p « .Jn0f0 have a sound-wave type of dispersion 
law E Rl p .Jn0f0 • When p » .Jnofo they go over 
into :ifmost free particles with Ep R~ E~ + n0f0• 
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This sort of energy spectrum appears also when 
one considers particles moving in a continuous 
medium with a refractive index. The transition 
from phonon to free particle behavior occurs at 
p ~ -./n0f0 « 1/f0, so that the approximation of 
constant amplitudes is valid in both ranges. 

The conditions -./n0f~ « 1 and pf0 « 1 are 
not independent. If we look at momenta p not 
greatly exceeding -./n0f0 , then the second condi
tion is a consequence of the first. If we are then 
neglecting quantities of order -./n0fij , we must 
also treat the amplitudes as constant. 

In Sec. (I, 5) we introduced the quantity 
<1 ( p + JL), the analog of the Green's function G 
but constructed from graphs with two ingoing ends 
instead of one ingoing and one outgoing. The analo
gous quantity with two outgoing ends will be denoted 
by G ( p + JL ) . It is obtained from G ( p + JL ) when 
1:02 is replaced by 1:20 • In the constant-amplitude 
approximation, Eq. (I, 5. 7) and (4.4) give 

G (p +fl.) = G (p +fl.) =- n0f0f(p02 - s~ + i8). (4.10) 

5. SECOND APPROXIMATION FOR THE GREEN'S 
FUNCTION 

For the second approximation to ~ and JL, 
we must retain quantities of order v'n0fg . As we 
saw at the end of the preceding section, we must 
then also retain terms of order pf0 in the ampli
tudes. The real part of the amplitude involves only 
even powers of p, and the imaginary part only odd 
powers. Terms of order pf0 arise only from the 
lowest approximation to the imaginary part of the 
amplitudes. The imaginary part of fs (p/2 p/2) 
is given by Eq. (3.13), and from Eq. (3.10) we see 
that the amplitude f ( p 0 ) is real [and anyway in 
this approximation we need only the square of the 
modulus of f (p 0 )]. 

The graphs of the first approximation give terms 
of order -./n0f8, namely the integral terms in Eq. 
(4.3). In these terms, as in Eq. (3.13), we may take 
the amplitudes to be constant. We have seen in 
Sec. 2 that graphs containing one circuit with three 
or more continuous lines give contributions of the 
same order. The summation over sets of graphs, 
which differ only in the number of continuous lines 
in a circuit, is automatically performed if one re
places the zero-order Green's function G0 by the 
first-order functions G, G and G. We therefore 
consider immediately the circuits which can be 
built out of G, G, G and r. There are altogether 
ten essentially different circuits (see Fig. 3). A 
rectangle with a cross denotes a sum of two rec
tangles, one being a direct interaction and the other 
an exchange interaction. The two differ only by an 

interchange of the upper or the lower ends. The 
sum of the two rectangles introduces a factor 
- i [ r ( 12; 34) + r( 12; 43 )], or in momentum 
representation - i [ r(p'; p; P) + r(-p'; p; P )] . 
If G, G and G are expanded in powers of the 
effective potential r' then in the lowest approxi
mation the graphs ( 3c, 3i, 3k) become circuits 
with two continuous lines. But all such circuits 
are already included in r and must therefore be 
omitted. This omission is represented in Fig. 3 
by the strokes across the continuous lines. Let 
- iF a ,b ... (Pi, ... , P1 ... ) denote the contributions 
from the graphs of Fig. 3. In the constant-ampli
tude approximation these contributions are: 

Fa (p~p~; PrP2) = i4f~ ~ G (q +fl.) G (Pr- p~ + q +fl.) d4q; 

Fb = i4f~ ~ G (q +fl.) G (p1 - p~ + q + fl.}d4q; 

Fe= in~ {G (q +fl.) G (Pr+ P2-q + !L) 

- 0° (q +fl.) G0 (Pr + P2- q +fl.)} d4q; 

Fd = i2n ~ G (q +fl.) G (p; + p;- q + !L)d4q, 

F, = i2n ~a (q + !L) a (p~ + p~ _ q + !L) d4q; 

Ff =if~~ G (q +fl.) G (Pr + P2- q +fl.) d4q; 

F g =if~) G (q + p.) G (p~ + p~- q + !L) d4 q; 

F h = i2f 0 ~ G (q +fl.) d4q; 

(5.1) 

F i =if 0 ~ { G (q + !L)- nof oG0 (q + !L) 0° (- q + p.)} d4 q; 

Fk = ifo ~ {G (q +fl.)- n0{ 0G0 (q + !L) 0° (- q +fl.)} d4q. 

Momentum conservation 1:p = 1:p' is assumed to 
hold everywhere. The q0-integration in Fh is 
performed with a detour into the upper half-plane, 
since this contribution must vanish as G - G0• 

Everywhere on the right of Eq. (5 .1) the first-
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approximation value J.L( 1) = n0f0 should be substi
tuted for J.Lo 

The ~ik involve special values of the F, to
gether with a factor ..fllo for each particle of the 
condensed phase: 

E~o (p + p.) = n0F a (p- p; 00) 

+n0Fb(p-p; 00) +n0Fe(p0-p; 0) 

+ n0Fe (Op- p; 0) + n0Fe (-pOp; 0) 

+ n0Fe (0- pp; 0) + n0F g (pO- pO;) 

+ n0F g (pOO-p;)+ F; (p- p;); 

E~2 (p + fL) = n0Fa (00; p- p) 

+noFb(OO; p-p)+noFd(O; p-pO) 

+ n0F d (0; pO - p) 

+ n0F d (0; - ppO) + n0F d (0; -pOp) 

+ n0FJ (; pO- pO) 

+ n0FJ (; pOO-p)+ FR.(; p- p); 

E~1 (p + fl.) = n0F a (pO; Op) + n0F b (pO; Op) 

+ noFc (pO; pO) + n0Fc (pO; Op) 

+ n0F d (p; OpO) + n0F d (p; OOp) 

(5.2) 

+ noF.(pOO; p)+n0F.(Op0; p) + Fh(p; p). 

To enumerate the vacuum loops which contribute 
to J.L, we must first distinguish one incoming or 
outgoing particle of the condensed phase (see Sec
tion (1, 4)) 0 After this we must sum the loops, 
counting separately all possible geometric struc
tures and all possible positions of the distinguished 
particle 0 The vacuum loops include three types of 
rectangle, differing in the numbers of incoming and 
outgoing continuous lines, and corresponding to fac
tors ~H>, ~AP and ~W 0 The distinguished parti
cle of the condensed phase may come out from 
~ H> or from ~ ~p 0 The sums of contributions 
from graphs of these two types are respectively 
-iFh(O; 0) and -iFi(O O;)o The term in J.L 

arising from all these vacuum loops is thus 

fL' = Fh(O; 0) + Fi(OO;)o (5.3) 

To carry out the q0-integration in Eq. (5.1), it 
is convenient to represent G and G = G in the 
following form, 

Aq 
G{q+p.) = qo-e +i8 

q 

= -C [ 1 _ 1 ] 
.q qo- E + i8 q0 + E - i8 ' q q 0 

(5.4) 

with 

Aq = (sq + z~ + nofo) / 2sq; 

Bq = (- sq + s~ + n0f 0) I 2sq 

= nU~ I 2sq ( sq + s~ + n0 fo}; Cq = n0f 0 / 2sq (5.5) 

depending only on jqjo The q0-integrations are 
now performed and the results substituted into Eq. 
(5.2) and (5.3). After some manipulations we ob
tain 

E~2 <2o> (p +fl.) = 2non ~ dq [(Aq; Bk) 

- (Aq + Bq; Ck) + 3CqCk] 

f \ d fC + nofo l 
- 0 ~ q 1 q 2n0f0 - 2e~ + i8 { ' 

_ (Aq; Bk) + 2CqCk + BqBk- 2 (Bq; Ck) 

pO + Eq + Ek- i8 
(5 o6) 

Here k = p - q, and the symbol (;) denotes a 
symmetrized product, (Aq; Bk) = AqBk + BqAko 
The integrands are all symmetrical in q and ko 

Before we add to Eq. (5.6) the second-order 
terms from Eq. (4.2), we transform the expression 
(4o3) for ~ 11 0 Remembering'that 

and introducing the new integration variable q' = 
q + p/2, we find that Eq. (4.3) gives to the required 
approximation 

En (p + fl.) = 2n0f 0 + 2n0 Im f s ( f f) 
+ 2nof~ \ dq [ 1 

0 0 
~ po+2n0f0 -eq-ek+i8 

(5.7) 

The total of all second-order terms in now obtained 
from Eq. (5.6), (4.3), and (5.7), and after some pl
gebra becomes 
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fL< 2> = 2f 0 ~ dq Bq + { nof~ ~ dq ( e~ - :q) • 

l:~~><o2> (p + f.l) = 2non ~ dq [(Aq; Bk) 

- (Aq + Bq; Ck) + 3CqCk] 

1 1 
X (po- eq- ek + ill - p" + eq + ek- ill) 

+ {-non ~ dq ( :~ - :q ) ; 

Eii> (p + f.l) 

(5 .8) 

+ 2n0 Im f s ( f f) 
- 2n f2 ~ d [ 1 _j_ _1 __!_] o o q o o o + ·~ ' 4e + 4e ' ep- eq- ek !o q k 

The value of Im fs (p/2 p/2) can be obtained from 
Eq. (3.13), and the integrals not involving p0 can 
be carried out exactly. In this way Eq. (5 .8) be
comes 

(5.9) 

(5 .10) 

(5.11) 

with 

R (qk) = 2s~sg- 2sqsk + n~f~, 
Q" (qk) = 3s~eg- sqsk + n0f 0 (eg + e~) + 
+ nM~+ [n0{ 0 (sq + sk)- sqs~- ekeg}. (5.12) 

( 

It is convenient to express the Green's function 
(4.5) in a form analogous to Eq. (5 .4). In this ap
proximation we find 

A +rx 
G (p + f.l) = P P -

p"-eP-AP 
(5.13) 

where O!p and A~ are the second-order correc
tions 

+ e~ + - (2) 
Ap = z~ (En+ En- 2f.l) + 

-p 

nofo ("+ .,- 2 2., )(2) 1 ("+ "'-)(2) + ~ "-'n + "-'n- fL - "-'2o + 2 "-'n- "-'n · 
p 

(5.14) 

These O!p and A~ are combinations of the in
tegrals (5.9) and (5.10). In the limits of small and 
large momentum (compared with .../nofo ), explicit 
expressions can be obtained for the functions O!p = 
a (p0; p) and A~= A'F(p0; p). When these are ex
amined it is found that there are no new poles of 
the Green's function. We here exhibit the behavior 
of the Green's function near to the poles Po Rl ± Ep . 

In this region we may write jp0 j = Ep in O!p, and 
we need retain only terms of first order in the dif
ference ( Ep 'F p0 ) in A~. For small momenta 
( p « .../n0f0 ) we then find 

V-f3( 2 nofo . 1 ep ) rxp= no o 32- + ~~-~ 
IT Ep IT no 0 

For large momenta only the imaginary part of A~ 
is important, 

(5 .16) 

For small momenta, in virtue of Eq. (5.13) and 
(5.15), the Green's function near to the poles may 
be written in the form 

(5 .17) 

For large momenta, O!p and ::\p may be neg
lected in Eq. (5.17). 

6. QUASI-PARTICLE SPECTRUM AND 
GROUND-STATE ENERGY 

We have already mentioned that the energy of a 
quasi particle is determined by the value of p0 (p) 
at a. pole of G ( p + p,). Only those poles are to be 
considered for which the imaginary part of the en
ergy is negative, so that the damping is positive. 
In the range p « .../n0f0 , Eq. (5 .15) and (5 .17) give 

s = p V nof o ( 1 + 6:2 V non) 

. 3 v-3 p• v-
- 16-40 nofo --,1 (p<Z; nofo), 

IT (nof ol 2 
(6.1) 
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In the high-momentum range, according to Eq. 
(5.16), we have 

+ nof (pp) (p c';s> v nof o)· (6.2) 

Equation (6.1) shows that for small p the quasi 
particles are phonons. The second approximation 
gives a correction to the sound velocity, and a 
damping proportional to p5 which is connected 
with a process of decay of one phonon into two. In 
the high-momentum range, the second approxima
tion gives a damping which is related to the imagi
nary part of the forward scattering amplitude, and 
so to the total cross section. 

In Sec. (I, 7) we found connections between the 
Green's function and various physical properties 
of the system. The mean number of particles Np 
with a given momentum p in the ground state of 
the system is related to the residue of the Green's 
function at its upper pole, 

Np = i ~ G dp0 / 2<- = (Bp + cxp) (I- Ap)· (6.3) 

When p « -./n0f0 , Eqs. (5.15) and (5.5) give 

(6.4) 

The imaginary parts of ap and A.p here cancel, 
as they should. To find the total number of parti
cles with p 'J'!. 0, we need to lmow Np for all mo
menta. We therefore use only the first approxima
tion formula for Np, namely Np = Bp. For the 
density of particles with p 'J'!. 0 we find 

n-n0 = i ~ G (p + 11-)d4 p 

(6.5) 

Equation (6.5) gives the relation between the den
sity n0 of particles in the condensed phase, which 
appeared as a parameter in all our equations, and 
the total number of particles in the system. 

We note here one important point. It can be 
seen from the way the calculations were done that 
the validity of the "gaseous" approximation re
quires that n0 be small. It is not directly required 
that the total density n be small, since n does 
not appear explicitly in the problem. But Eq. (6.5) 
shows that when n0 is small n is necessarily 
small, too. This means that it is not possible to 
decrease significantly the density of the condensed 
phase by increasing the interaction or the total 
density, so long as n0 « f03• This result confirms 
and strengthens the assertion made in I that the 

condensed phase does not disappear when interac
tions are introduced. 

We can calculate the ground-state energy from 
the chemical potential p,. By Eq. (4.4) and (5.11), 

11- = nofo I+ 3rt2- V nofo , ( 5 -3) (6.6) 

Expressing n0 in terms of n by means of Eq. 
(6.5), we have in the same approximation 

· 4 v-a) 
iJ.= nfo(l+ 3rt2 nfo. 

(6. 7) 

By definition we have J.L = aan ( ~0 ). Therefore, 

integrating Eq. (6.7) with respect to n, we obtain 
the ground -state energy 

Eo _ ~ 2 ( J!!_ ,-3 

v - ~ n f o \I + 15rr2 V nf o) ' 
(6 .8) 

This coincides with the result of Lee and Yang3 

for the hard-sphere gas, if we remember that in 
that case f0 = 47ra. 

The condition for the system to be thermody
namically stable is BP/av = -B2E/av2 < o. This 
condition reduces to f0 > 0. Our results are only 
meaningful when this condition is satisfied. 

7. POSSIBILITY OF HIGHER APPROXIMATIONS 

In the first two approximations, all the results 
can be expressed in terms of the amplitudes f. 
Thus the problem of many interacting particles is 
reducible to the problem of two particles. 

a b 

FIG. 4 

In the next approximation we must consider con
tributions to I:ik proportional to n0f~. Among 
other graphs, we must include the "triple ladders" 
illustrated in Fig. 4. The integrals arising from 
graphs of this type diverge at high momenta and 
become finite only when the momentum dependence 
of f is taken into account. For an estimate we 
may cut the integrals off at a momentum p ~ f01• 

We see then that an increase in the number of 
"rungs" does not change the order of magnitude of 
the integral. In fact, each rung adds a factor f0G2 
and an integration over one momentum 4-vector. 
For a rough estimate we take q0 ~ q2, G ~ q-2, 
and find 
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~ f o02d4q~ f 0 ~ dq ~ I' 

Therefore we have to consider simultaneously all 
such graphs with any number of rungs. The total
ity of these triple ladders describes completely the 
interaction of three particles. Therefore the sum 
of contributions from such graphs can be expressed 
only by means of three-particle amplitudes. 

In the third approximation (terms proportional 

to n0f~) we thus require a solution of the three
particle problem (see also Ref. 4). Since the 
problem of three strongly interacting particles is 
in general insoluble, the higher approximations to 
the many-particle problem are physically mean
ingless. 

8. HIGH EXCITATIONS (pf0 ,..., 1) IN A HARD
SPHERE GAS 

For the high-energy excitations, the momentum 
dependence of the amplitudes becomes important. 
We therefore consider as an example the case of 
a gas of hard spheres of radius (a/2 ). We also 
consider only the first approximation in the den
sity expansion, i.e., we use Eq. (4.6). The ampli
tude f (p 0) can be computed exactly from Eq. 
(3.10). For fs (p/2 p/2) we consider only s
waves. The higher waves (the symmetrized am
plitude involves only even values of P.) add a 
numerically unimportant contribution. For exam
ple the d-waves at pa ~ 1 contribute about 10 
per cent. We substitute into Eq. (4.7) the values 
of the amplitudes 

f ( 0) _ 4_ sin pa • f ( p p) _ 8T: . pa -ipa 12 p - "-- , s I -.:;- -2 - - Sin -c; e · , 
p \- p ~ 

(8.1) 

and obtain for the quasi-particle energy 

[( p2 sin pa \ 2 2 9 sin 2 pa]"' 
s = T + 8r.:n 0 -P--- 4rrn0a) - !61t n0 ~ , (8.2) 

At high momenta this becomes 

(8.3) 

The second term in Eq. (8.3) changes sign at 
pa ~ 1. 9. An oscillating component is superim
posed on the usual parabolic dependence. This 
oscillation will not be important since the magni
tude of the term is small; when pa "' 1 it is of 
relative order n0a 3 • However, if one formally 
allows the parameter n0a3 to become larger in 
Eqs. (8.3) or (8.2), the second term of Eq. (8.3) 
produces an increasing departure of the disper
sion law from the parabolic form, until at suffi
ciently high densities there appears first a point 
of inflection and finally a maximum and a mini-

mum in the curve. The spectrum then resembles 
qualitatively the spectrum postulated by L. D. 
Landau5 to explain the properties of liquid helium 
II. This extrapolation is certainly unwarranted. 
But it allows one to suppose that the difference 
between liquid helium and a non-ideal Bose gas is 
only a quantitative one, and that no qualitatively 
new phenomena arise in the transition from gas 
to liquid. 

9. CONCLUSION 

We summarize the main features of the approx
imation which we have studied. 

(1) The interaction between particles is specified 
not by a potential but by an exact scattering ampli
tude. This allows us to deal with strong interac
tions. After the potential has been replaced by the 
amplitude, it is possible to make a perturbation ex
pansion in powers of the amplitude, or more pre
cisely in powers of v'n0f~ . 

(2) We make a series expansion not of the quasi
particle energy (this appears as the denominator 
of the Green's function), but of the effective inter
action potentials ~ and the chemical potential J.L. 

The formula giving the Green's function in terms 
of 1: ik and J.L is exact. 

From Eq. (4.7) and (4.9) we see that Ep can be 
expanded in powers of f only for high-momentum 
excitations with p » v'nof0 • The low-lying excita
tions of the system are in principle impossible to 
obtain by perturbation theory. For this reason, 
the expression obtained by Huang and Yang4 for the 
energy of the low excitations of a Bose hard-sphere 
gas is incorrect. They used perturbation theory 
with a "pseudopotential ," and their result agrees 
with a formal expansion of Eq. (4.7) in powers of 
fo. 

In conclusion I wish to thank A. B. Migdal and 
especially V. M. Galitskii for fruitful discussions, 
and also L. D. Landau for criticism of the results. 
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