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We obtain the conditions for the existence of a superconducting state in bulk, single-domain 
ferromagnetic samples in the shape of an ellipsoid of revolution. The direction of the spon
taneous magnetization is assumed to make an arbitrary angle 80 with the direction of the ex
ternal field, which is parallel to the axis of the ellipsoid. We give estimates from which it 
follows that the superconducting state can occur only if the angle e0 ~ 10-2• If this condition 
is satisfied, the use of oblate samples with a large demagnetization factor should formaUy 
favor the possibility of detecting the superconductivity. 

l. The problem of a possible observation of super
conductivity in ferromagnetics was considered in 
a paper by Ginzburg. 1 It was shown that in the case 
of a bulk cylindrical specimen, magnetized along 
the axis of the cylinder, the possibility of a transi
tion to a superconducting state was hampered be
cause of the presence inside the specimen of the 
magnetic induction B0 = 47rMo, which is connected 
with the spontaneous magnetization M0 of the fer
romagnetic. For specimens with a large demag
netization factor (for instance, for thin disks mag
netized perpendicularly to their plane) the induc
tion B in the sample in the normal state turns out 
to be very smaU compared to 47rMo which can as
sist the onset of superconductivity. Ginzburg, when 
considering this, pointed out at the same time the 
necessity of a special analysis of that case, taking 
boundary effects into account. In the present paper 
we elucidate the conditions for the existence of a 
superconducting phase in ferromagnetics of finite 
dimensions and ellipsoidal shape with a spontane
ous magnetization at an arbitrary angle with the 
direction of the external field. 

2. It is well-known2•3 that if the processes con
sidered take place at constant temperature T and 
everywhere constant and uniform magnetic field 
H0, the following function is extremal in the equil
ibrium state, 

<D (T, H 0 ) = ~ F H dv .:.._ 4~ ~ H0B dv + 8~ ~ H~ dv. 
(1) 

Here FH is the internal free energy density of the 
system under consideration, taking the total mag
netic field H into account, B is the induction 
field, and the integration is over the whole of space. 

For a solid in the normal state the free energy 
is of the form 
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(2) 

where F no is the free energy density when no 
magnetic field is present and Wm the free energy 
density connected with the field. For a ferromag
netic we must take 

(3) 

where we have used in (3) the expression B = H + 
47rMo for the induction inside an "ideal" ferromag
netic (the magnetic permeability J1. is put equal 
to unity, which corresponds to the saturated case). 
We shall assume that the specimen consists of one 
domain and that at liquid helium temperatures M0 

is constant and does not depend on the temperature. 
From (1) to (3) we get for a specimen in the 

normal state 

where v- is the volume of the specimen. 
We shall consider specimens which are suffi

ciently large so that we can neglect surface effects. 
For a ferromagnetic in the superconducting state 
the free energy is equal to 

~ F slf dv = ~ F so dv + ~ ( ~; - M0 B) dv 

=~ Fs0 dv + 8~ ~ (H?dv+, 

inasmuch as within a superconductor B = 0 and 
outside the specimen B = H+ ( H+ is the field out
side the specimen and v+ the volume outside the 
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specimen). For the thermodynamic potential (1) 
we get 

<I>s (T, H0 ) = ~ Fs0 dV- + ;; ~ H~ dv

+ 8~ ~ (W- H0) 2 dv+. (5) 

Equilibrium between the normal and the super
conducting phases is possible only if the potentials 
are equal, 

(6) 

Below we evaluate the quantities (4) and (5) for 
the case of samples having the shape of ellipsoids 
of revolution with the axis of revolution parallel to 
the external field. 

3. First we find the magnetic field outside and 
inside a prolate ellipsoid of revolution, the spon
taneous magnetization of which is in the direction 
which makes an angle e0 with the direction of the 
external field. Introducing spheroidal coordinates 
g, 71, ¢ ( see, for instance, Ref. 4) and solving the 
usual magnetostatic problem in the case of a speci
men in the normal state, we get for the scalar po
tential of the magnetic field the expression 

(t = cbl [H0 + AI/d~)l + cV~2 -1 lfl-'1)2A2/ 2 (~)cos cj>, 

'f- = C~'Yj [H0 + A1ld~o)l 
+ c Y~2 - 1 V 1- 'fj 2A212 (~0) cos¢; (7) 

00 co 

It(~)= ~d~l~2(~2-l), /2(~) = ~d~l(~2-1)2. (7a) 
; ; 

The coordinate surface g = g0 coincides with 
the surface of the ellipsoid considered, the equa
tion of which is of the form 

where 2c is .the interfocal distance. 
In the case of a supercontlucting ellipsoid (in

side the specimen B- = 0 ) we find 

(8) 

For the case of an oblate ellipsoid of revolution we 
obtain similar expressions. 

Evaluating the field H = - grad ({J and perform
ing the integrations indicated in (4) and (5), we ob
tain equations which are correct both for a prolate 

and for an oblate ellipsoid of revolution.* 

<Pn = ~ F no dv- ~ (4o.M0)2 [(1 - n1) cos2 fl0 

+ (1 - n2) sin2 fl0 ] - v-M 0H 0 cos fl0 , 

~ v- H~ 
<I>s = Fso dv + 8- 1--. 

7t' -nl (9) 

In the case of a prolate ellipsoid of revolution 
the quantities n1 and n2 entering into (9) have 
the form 

In the case of an oblate ellipsoid of revolution, 
the equation of which is 

(x2 + y2) IE~ + z2 I(~~- 1) = c2' 

the quantities n1 and n2 have the form (Po = 

"g~ -1 ) , 

n1 = p0 (p~ + I) [ tan- 1 Po + :0 - y J , 
( 2 +l)rn Po 1 _1 ] 

n2 =Po P0 L 4- 2 (p~ + 1) 2 ·tan Po · (11) 

4. Equating the thermodynamic potentials (9) we 
find the critical external magnetic field Her for 
which the normal and the superconducting phase 
can exist in equilibrium with one another, 

Her= - 4nM0 COS 00 + R; 

R = {81rL1 ( 1 - n1)- ( 4nM0)2 ( 1 - n1) ( 1 - n2) sin2 60}'1•, 

(12) 

We note that for e0 = 0 the expression for Her 
coincides with the one obtained by Ginzburg. 1 

The direction of the external field H0 will al
.ways be taken as positive so that we must have 
Her ~ 0. As far as the spontaneous magnetization 
M0 is concerned, two cases are possible. 

(1) The case where cos e0 ~ 0. Then 

(13) 

In order that Her be real and positive, the follow
ing inequality must be satisfied 

8nL1 :;> ( 4nM0 ) 2 [( 1 - n1)·cos2 fl0 + ( 1 - n2 ) sin2 fl0]. (14) 

*Since at infinity the field H-H., is the field of a dipole 
with moment ll; the same result for <I>. can be obtained by 
using the equation (see Ref. 3). 
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To violate this inequality we must have ci>n- <I>s 
< 0, i.e., the superconducting phase must be ther
modynamically unfavorable. If Eq. (14) is satisfied 
the superconducting state is possible* for Ho < 
Her• and for H >Her the normal state. 

(2) The case where cos e0 ~ 0. Then there 
are, generally speaking, two critical fields possi
ble, 

HcrF 4M0 ! COS 80 !- R, Hcr2= 4r:M0 I COS 80 \ + R. (15) 

In order that such critical fields can exist it is 
necessary that the following conditions be fulfilled 

Condition (16) is necessary for the possibility of 
the existence of superconductivity. If it is violated, 
we get <I>n- <I>s < 0, i.e., the normal state will be 
more favorable. If (16) is satisfied, but condition 
(17) is·violated, Hcrt turns out to be negative, but 
<I>n- cl>s > 0 for H0 < Hcr2· This means that the 
critical field Hcrt does not exist and superconduc
tivity is possible in a field H0 ~ Hcr2. If both condi
tions (16) and (17) are fulfilled, the superconducting 
state is possible only in the range of fields Hcrt ~ H0 ~ 

Hcr2. In the last case it is clearly necessary that 
the field Hcrt directed against the spontaneous 
magnetization M0 is less than the coercive force 
of the sample He, that is, we must have 

(18) 

5. Let us now go over to a discussion of the con
conditions which we }).ave obtained for the existence 
of a superconducting state in ferromagnetic speci
mens. The quantity S7T~ = ( H~rM )2 which occurs 
in Eqs. (14), (16), and (17) is clearly the square of 
the critical magnetic field, as it was in a non-ferro
magnetic metal with the same difference ~ = F no 
- F sO• as also for the ferromagnetic considered. 
For the known superconducting elements the value 
of H~rM at T = 0 varies from several tens to 
several thousands of oersteds. Below we shall 

0 assume HcrM ~ 100 oersted and B0 = 47TMo ~ 
104 gauss to obtain some estimates. The quantity 
nt varies from zero for a cylindrical specimen to 

*Indeed, as in the case of ordinary superconductors a 
pure superconducting state is possible only if the maximum 
field at the equator of the ellipsoid of revolution does not 
exceed the critical field, that is, in a field H0 <HerMO-n,). 
In the range of fields HcrM ( 1- n1 ) < H0 < HcrM the interme
diate state is realized 

unity for a specimen in the shape of a thin disk. 
The quantity n2 varies from zero (disk) to Y2 
( cylinder ) . 

Let us consider the case cos e0 > 0 and condi
tion (14). It is easily seen that for the values of 
H0 crM and B0 chosen by us, it is necessary for 
the possible existence of a superconducting state 
to take a disk-shaped specimen with 1 - n1 ~ 10-4, 

magnetized perpendicularly to the plane of the disk, 
while the angle e0 of the deflection of M0 from 
the direction of H0 may not exceed e0 ~ 10-2. In 
the case of prolate specimens or for angles e0 > 
10-2, the superconducting state is possible only 
for elements with an anomalously large value of 
~ = F no - F so or else with an anomalously small 
value of B0 = 4'1TM0 which strongly decreases the 
probability of observing the superconductivity of 
ferromagnetics. 

In the case cos e0 < 0 the necessary condition 
(16) also requires that the angles are small, e0 ~ 
10-2. Condition (17), i.e., the condition for the ex
istence of the critical field Hcrt• can be satisfied 
only for not too oblate specimens (or for anoma
lous values of ~ and B0 ) • In that case it is nee
ess~ry to take also into consideration condition (18) 
which in several cases apparently can be realized. 

In the case of prolate specimens the known val
ues of M0 and He for ferromagnetic elements do 
not allow any hope for the observation of supercon
ductivity in bulk specimens. 

For very oblate specimens with 1-nt ~ 10-4 

superconductivity is possible in an arbitrarily 
small external field, limited by the requirement 
Ho <He. 

Thus we can summarize and say that the possi
bility to observe a superconducting state in bulk 
ferromagnetic samples is formally facilitated by 
using specimens with a large demagnetization 
factor. 

In practice, however, it is impossible to obtain 
a single-domain sample with the quantity 1 - nt ~ 
10-4, or in other words with the ratio of the trans
verse dimensions of the specimen to its thickness 
equal to 104• In view of this it is necessary to 
analyze further the problem taking into account the 
role of domain structure, the energy of magnetic 
anisotropy, and so on. 

In conclusion I want to use the opportunity to 
thank V. L. Ginzburg for valuable hints and for his 
interest in this paper. 
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It is shown that the techniques of quantum field theory can be applied to a system of many 
bosons. The Dyson equation for the one-particle Green's function is derived. Properties 
of the condensed phase in a system of interacting bosons are investigated. 

1. INTRODUCTION 

IN recent years Green's functions have been 
widely used1 in quantum field theory, and in par
ticular in quantum electrodynamics. This has 
made possible the development of methods2 which 
escape from ordinary perturbation theory. The 
method of Green's functions has also been shown* 
to be applicable to many-body problems. In such 
problems the one-particle Green's function deter
mines the essential characteristics of the system, 
the energy spectrum, the momentum distribution 
of particles in the ground state, etc.3 

The present paper develops the method of 
Green's functions for a system consisting of a 
large number N of interacting bosons. The spe
cial feature of this system is the presence in the 
ground state of a large number of particles with 
momentum p = 0 (condensed phase), which pre
vent the usual methods of quantum field theory 
from being applied. We find that for large N the 
usual technique of Feynman graphs can be used for 
the particles with p .c 0, while the condensed 
phase (we show that it does not disappear when 
interactions are introduced) can be considered 
as a kind of external field. 

The Green's function is expressed in terms of 
three effective potentials ~ik• describing pair-

*Private communication from A. B. Migdal. 

production, pair-annihilation and scattering, and 
in terms of a chemical potential p.. This is the 
analog of Dyson's equation in electrodynamics.4 •1 

Some approximation must be made in the calcula
tion of ~ik and p.. If these quantities are com
puted by perturbation theory, the quasi -particle 
spectrum of Bogoliubov5 is obtained. In the follow
ing paper6 we evaluate ~ik and p. in the limit of 
low density. 

2. STATEMENT OF THE PROBLEM. FEYNMAN 
GRAPHS 

We consider a system of N spinless bosons 
with mass m == 1, enclosed in a volume V. We 
suppose N and V become infinite, the density 
N/V = n remaining finite. A summation over dis
crete momenta is then replaced by an integral ac
cording to the rule 

~ ~ (2TCt3 v ~ dp. 
p 

The Hamiltonian of the system is H = H0 + Ht> 
where 

H 0 =} ~ \j'Y+ (x) \l'Y (x) dx = ~ s~ataP; s~ = i2 , (2.1) 
p 

H 1 =} ~ 'f'+ (x) 'Y+ (x') U (x- x') 'Y (x') 'f' (x) dx dx' = 

(2.2) 


