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A study is made of peculiarities of the scattering of x-rays and thermal neutrons by single­
component crystals near phase-transition points of the second kind. Explicit account is taken 
of geometric distortions of the crystal lattice owing to fluctuations of the internal parameters 
characterizing long-range order. The general case is considered, in which the long-range 
order is characterized not by just one parameter, but by several. Inclusion of the geometrical 
distortions can lead to a decided change of the qualitative pattern of intensity distribution of the 
diffuse scattering in the reciprocal lattice space, and in particular to the appearance of compo­
nents that are inversely proportional to the distance from a point of the reciprocal lattice, i.e., 
that become infinite with approach to such points. Near a phase-transition point of the second 
kind peculiarities can be observed in the distribution of the diffuse scattering both near super­
lattice reflections and also near the main regular reflections. The type of temperature depend­
ence shown by the scattering and its position in the reciprocal lattice space depend in an essen­
tial way on the symmetry of the crystal. Ferroelectric crystals are discussed in greater detail. 
In this case the parameters that determine the intensity of the diffuse scattering near reciprocal 
lattice points can be found by means of independent experiments. 

IN the preceding paper1 ( cited hereafter as I) the cal distortions of the crystal lattice. In addition, 
discussion of the geometrical distortions of the the results of Landau will be extended to the case 
crystal lattice of a solid solution was based on a in which the change of the long-range order in the 
method in which the distortions were related to crystal is characterized not by just one, but by sev-
waves of variation of composition or of the long- eral parameters. The scattering by ferroelectric 
range order parameters. Important lattice distor- crystals is considered in greater detail. 
tions can also arise from fluctuations of the inter- We consider the case of scattering of monochro-
nal parameters that characterize the long-range matic radiation by a single crystal, and take into 
order in single-component crystals (ferroelectric, account neither scattering by thermal vibrations, 
ferromagnetic, antiferroelectric, and antiferromag- nor Compton scattering of x-rays and magnetic 
netic substances, quartz, etc.). As Landau has scattering of neutrons by the electron shells of 
shown, 2 particularly large fluctuations of the long- atoms. The calculation is carried out in the frame-
range order parameters, giving rise to anomalously work of the kinematic theory of scattering. For 
large scattering of x-rays, must occur near a definiteness the formulas given will be written in 
phase-transition point of the second kind. In Ref. terms appropriate to the scattering of x-rays. For-
2 the calculation of the scattering was carried out mulas for the scattering of neutrons can be obtained 
without including the geometrical distortions of the from them essentially by just a simple change of 
lattice, and the case considered was that in which notation. 
the long-range order can be characterized by only Let us first consider the case in which the val-
one parameter. In a number of cases, however, as ues of the long-range order parameters that are 
can be seen from the results obtained for solid subject to anomalously large fluctuations can be 
solutions ( cf. I), the presence of geometrical dis- uniquely specified by giving the values of the com-
tortions leads to the appearance of qualitatively ponents of the spontaneous polarization, Pi. This 
new effects. Therefore the purpose of the present is the case, for example, in BaTi03• In addition to 
paper is to discuss the scattering of x-rays and the long-range order parameters, there can also 
thermal neutrons near phase-transition points of be fluctuations in the internal parameters that 
the second kind, including the effects of geometri- characterize the local order in the distribution of 

281 



282 M. A. KRIVOGLAZ 

atoms at the lattice points. But in the cases con­
sidered with below, in which the fluctuations of the 
Pi lead to anomalously large scattering, fluctua­
tions of the local-order parameters evidently play 
a relatively small part and will not be taken into 
account. 

The fluctuations Pi- Pi of the polarization 
components can be expanded in Fourier series: 

Pit- P1 = :L' [Pki exp (- ikRtl + P~1 exp (ikRt)]. (l) 
k 

Here Pi is the average equilibrium value of the 
i-th component of the polarization vector, Pit is 
the value of Pi corresponding to cell number t, 
Rt is the radius vector of this cell, and the prime 
on the summation sign means that the summation 
is taken over values of the vector k/21T that lie in 
a half-cell of the reciprocal lattice and satisfy cy­
clic conditions, the term with k = 0 being excluded. 
The polarization wave for each value of k corre­
sponds to a wave of displacements of the atoms. 
In what follows we shall study the diffuse scatter­
ing only in the neighborhood of the regular Laue 
reflections (where this scattering is anomalously 
large). Because of this we can restrict ourselves 
to the consideration of long waves of fluctuation. 
For these waves the displacements of lattice points 
of different types are almost identical ( cf. Sec. 2 
in I ) , so that the displacements of the various 
atoms of cell number t corresponding to the k-th 
polarization wave are practically the same and can 
be written in the form: 

3 

0Rtk = i ~ ah1kk" I Pkt exp (- ikRt)- P~; exp (ikRt)L (2) 
i'"-"1 

where k' is a vector along the displacement of the 
atoms in the k-th wave, with k' = k. 

The intensity of the x-ray scattering in the 
neighborhood of the Laue reflections, expressed in 
electronic units, can be represented in the follow­
ing form: 

1 CCC~ fu exp (iq1. Rt + rlRt) 12· 
I I I (3) 

Here q1 is the difference of the wave vectors of 
the scattered and incident waves, the averaging is 
taken over all possible configurations of the atoms, 
and f£t is the structure factor of cell number t 
corresponding to the £-th Laue reflection and cal­
culated with inclusion of effects of geometrical dis­
tortions. The quantity f£t can be written as the 
sum of the average value of the struct~e factor 
corresponding to .the £-th reflection, f£, and the 
departure from the average value, ~f£t• corre­
sponding to cell number t. In the calculation of 
f£t the atomic factors for the individual lattice 

points must be multiplied by factors exp (- Ly/2) 
for each type y of lattice point, to take account of 
the weakening of the amplitude because of the geo­
metrical distortions ( cf. Sec. 2 in I). Since in the 
determination of the Ly one must include not only 
the long but also the short waves, we shall not give 
formulas for these quantities, recalling that the 
structure factor f£. can be determined directly 
from x-ray data on the intensities of the regular 
reflections. 

When the components of the polarization vector 
are changed by amounts ~pi the average structure 
factor f£ is changed by the amount d£i~Pi, where 
dfi depends on the number of the reflection (for 
some reflections d£i = 0). Here and in what fol­
lows, summation over repeated indices i is un­
derstood. The deviation of the atomic factor of 
cell number t from the average value is (Pit -
Pi) dfi. ( Some difference is possible between the 
values of d£i that are involved in the change of the 
f£t by fluctuations and are defined for unchanged 
values of the short-range order parameters and 
the valu~ of d£i that correspond to the equilibrium 
values f£ and are defined for values of the short­
range order parameters that do not vary with 
changes of the Pi.) For the neighborhood of a 
regular reflection, where we can use for the calcu­
lation of the diffuse reflection the d£i correspond­
ing to that reflection and the displacements of the 
atoms can be determined according to Eq. (2) with­
out taking account of the atomic structure, by Eqs. 
(3) and (2) the contribution to the scattering ampli­
tude from elementary cell number t is given by 

lfz + ~, (dt; -ftak;k'qdk2 ) P~,;; exp (- i kRt) 
I_ !,; 

~· - . * l w + f (dt; + [iaki k'qdk") Pki exp (i kRt) J exp (i q1 Rt). 

In the summation of the expression (4) over the 
elementary cells (over t) near regular reflec­
tions (where a condition of the type of Eq. (9) of I 
is satisfied), the most important part in the sum 
over k is played by the term with k = q or k = 
- q, where q = q1 - 21TK£, and K£ is the vector 
of the reciprocal lattice lying closest to the end of 
the vector qtf21T and corresponding to the £-th 
reflection (the "reduced" vector q/21T lies in the 
first cell of the reciprocal lattice). Therefore, 
squaring the indicated sum in accordance with Eq. 
(3), we find that the intensity of the scattering is 
given by 

8 No -f----:;;' ( . + N2 '\ (f- qlq' d ) p \t I .. c .-::3 :S:· i 1 ; o ql) o 
1 

1 -Qi-a~;- ;; qi . , 

where N0 is the number of elementary cells in 
the crystal and ~' is the volume of a cell. The 

(5) 
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first term, involving the o function, gives the in­
tensity of the regular reflection, and the second 
term gives the intensity IF of the diffuse scatter­
ing. 

To carry out the averaging in Eq. (5) one can 
use the probability distribution for the Fourier 
components Ilti of the polarization fluctuations 
for small k: 

Here rp is the thermodynamic potential per unit 
volume, and Aijmn is a tensor of the fourth order. 
Using the fact that o2cp/oPioPj = Kij1, where Kij1 

is a tensor, the reciprocal of the electric suscepti­
bility tensor,3 we get from Eqs. (5) and (6): 

I = 8rr3 ~~ I fz 12 8 ( q1) 

NokT r- q,q' ) (- q,q' d ) + ~\fzaq;(/2 -dli fzaqi(/2- li (7) 

X (x -l + Amnqmqn)i/. 

Here ( K-l + Amnqmqn)ij1 are the components of a 
tensor, the reciprocal of the tensor Kil + 
Aihmnqmqn. For sufficiently small values of q 
the last factor in Eq. (7) is just the electric sus­
ceptibility Kij. 

The quantities dH appearing in Eq. (7) can be 
determined from the dependence of the structure 
factors (i.e., the intensities of the regular reflec­
tions) on the polarization (or on the intensity of 
the external electric field). One can find the quan­
tities 3.qi by considering the expression for the 
stress tensor in an inhomogeneously polarized 
crystal. If we note that in the presence of fluctua­
tions oP the expression for the free energy of the 
deformed crystal contains the term - EijmUijoPm, 
we get for the components O"ij of the stress tensor 
the expression 

(8) 

where Umn are the components of the deformation 
tensor and A.ijmn are the components of the elas­
tic modulus tensor. In order to get the formula 
for 8.qm we must insert in Eq. (8) instead of c5Pm 
a periodic function corresponding to the k-th fluc­
tuation wave, and instead of Umn the components 
of the deformation tensor corresponding to the 
wave of geometrical distortion produced by the 
fluctuation wave in question when the boundaries 
of the crystal are kept motionless. Then, noting 
that oO"ij/oxj = 0, and carrying out the same argu­
ment as for the derivation of Eq. (16) of I, we get 
three equations for akmkr: 

(i = I ,2,3), (9) 

where ni are the direction cosines of the wave 
vector k. Here it is clear that the third-order 
tensor Eijm is to be determined from the depend­
ence of the stresses (or deformations) on the 
polarization (i.e., on the external electric field). 
Thus, just as in the case of scattering by solid 
solutions, all the parameters appearing in the ex­
pression for the diffuse scattering, with the excep­
tion of Aijmn• can be determined from independ­
enf experiments. 

As follows from the thermodynamic theory of 
ferroelectricity, 4 at a phase transition point of the 
second kind the components of the reciprocal die­
lectric susceptibility tensor Kij1 go to zero, and 
by Eq. (7) this has the consequence that an anoma­
lously large diffuse scattering should appear near 
this point. In this connection the nature of the de­
pendences of IF on the temperature and on q de­
pends on the symmetry of the crystal. Near the 
temperature T0 of a phase transition of the sec­
ond kind the tensor Eijm can be written in the 
form 

Let us first consider the case in which the ten­
sor components E~jm are different from zero 
(i.e., in which there is a piezoelectric effect in the 
non-ferroelectric phase). For this case Eqs. (7) 
and (9) show that for reflections for which fl >"' 0 
in the non-ferroelectric phase, both above and be­
low the temperature T 0 there is a term in the ex­
pression for IF that has the factor q-2 and thus 
goes to infinity as we approach a point of the recip­
rocal lattice. For sufficiently small q the coeffi­
cient of this term contains Kij• i.e., it becomes 
anomalously large for T- T0 (this coefficient is, 
of course, decidedly dependent on the quantity 
E~jm). The terms containing the factor q-2 must 
lead to a strong anisotropy of the intensity distri­
bution of the diffuse scattering, regarded as a func­
tion of position in the space in the reciprocal lat­
tice, since they are proportional to cos2 cp, where 
cp is the angle between the vectors q' and q1• 

Since according to Eq. (9) the 8.qm can also depend 
strongly on the orientation of the vector q, this 
anisotropy does not reduce to just a proportionality 
to cos2 cp, and the pattern of the intensity distri­
bution of the diffuse scattering will be different in 
the neighborhoods of different reciprocal lattice 
points. The term proportional to q - 2 is absent 
for small scattering angles, when q = ql> and the 
coefficient of this term increases with increase of 
the order of the reflection (with increase of jq1l ) . 
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Besides the terms containing factors q-2 and q-1, 

for reflections with d.H different from zero there 
is also a sharp increase nearthe temperature T0 

in a term proportional to d}i, which plays an im­
e_ortant role for somewhat larger values of q. If 
f£ = 0 for T > T 0, only this term remains in the 
non-ferroelectric phase, and near such regular re­
flections the intensity of the diffuse scattering does 
not go to infinity for q- 0, but reaches its maxi­
mum value ( which increases rapidly as T - T 0 ) 

at the point q = 0. For T < T 0 the quantity f£ in 
this case is small near the temperature T0, so 
that the terms proportional to q -2 have a small 
proportionality coefficient. Along with the sharp 
increase of Ip, near the temperature T0 there 
must be an increase of the quantities Ly that de­
termine the intensities of the regular reflections. 
It can be shown that near the temperature T 0 these 
quantities contain terms proportional to Kt/2• This 
sort of qualitative picture of the intensity distribu­
tion should be found, for example, in scattering by 
crystals of the type of Rochelle salt, KH2P04, etc. 

The qualitative picture of the temperature de­
pendence of IF is changed if the E~jm vanish 
identically because of requirements imposed by 
the symmetry of the crystal. This occurs if the 
crystal in the non-ferroelectric phase has a center 
of symmetry. In this case in the non-ferroelectric 
phase Eqs. (7) and (9) indicate that eve!! in the 
neighborhoods of reflections at which f£ ¢ 0 the 
coefficients of q-2 and q-1 arising from the po­
larization fluctuations considered here are equal 
to zero (there can be some nonvanishing contri­
butions to these coefficients, arising from fluctua­
tions in the short-range order). In the ferroelec­
tric phase the coefficient in question is proportional 
to P2 ( since aqm ....., P), where P is the spon­
taneous polarization, and because of this for small 
values of P, near an ordinary phase transition 
point of the second kind, the term proportional to 
q-2 does not become as large as in the case con­
sidered above. The term proportional to dii here 
gives the anomalously large scattering at the tran­
sition point. But near the critical point at which 
the curve of points of phase transition of the sec­
ond kind goes over into a curve of phase transition 
of the first kind, the product P2Kij is very large, 
so that just as in the case considered above ( E~jm 
¢ 0) the term containing the factor q - 2 becomes 
anomalously large for the ferroelectric phase as 
we approach the critical point (the same thing hap­
pens for phase transitions of the first kind, near 
the critical point). In the non-ferroelectric phase 
the coefficient of q-2 must be considerably smal­
ler. The scattering proportional to q-2 should 

appear particularly strongly in crystals with a 
large discontinuity of the coefficient of thermal 
broadening. Crystals with E~jm = 0 include, for 
example, ferroelectrics of the type of BaTi03 • In 
these crystals the polarization is directed along 
the cubic axis (the z axis), and the only nonvan­
ishing components of the electric susceptibility 
tensor are Ku = K22 and K33 • In this case the ex­
plicit form of the temperature dependence of Ip 
can be found if we substitute for Kij and P (in­
volved in aqm) in Eq. (7) the expressions for these 
quantities obtained in the theory of ferroelectricity 
[for example, Eqs. (19) and (20) of Ref. 3 ]. 

One can deal in the same way with the general 
case of crystals observed near phase transition 
points of the second kind. Here the inhomogeneity 
of the crystal is characterized by the fluctuations 
of the quantities ci which determine the change of 
the symmetry of the crystal in the phase transition. 
These quantities can be taken to be the coefficients 
in the expansion of the change op of the density 
function of the crystal in the transition: op = 

~ ci 'Pi• where the 'Pi form the basis of the irre­

ducible representation of the symmetry group of 
the more symmetrical phase which is manifested 
in the transition to the less symmetrical phase.5 

It is clear that the intensity of the scattering aris­
ing from the fluctuations of the Ci can be deter­
mined in the same way as the intensity of the scat­
tering arising from the fluctuations of the Pi, i.e., 
by a formula analogous to Eq. (7): 

N - -
I= 87t3 i I fzl 2 a (qz) 

(10) 

The summations over i and j are here taken 
from 1 to p, where p is the number of functions 
forming the basis of the irreducible representation 
in question. The cp-;{ij are the elements of the 
matrix reciprocal to the matrix a2cp/aciacj + 
Aijmnqmqn· The quantities d£i are the coeffi­
cients in the expansion of the f£ in terms of the 
Ci, so that they can be determined from the change 
of the f£ (the intensities of the regular reflections ) 
below the transition temperature. The coefficients 
aqi can be found from Eq. (9) if we substitute in­
stead of the Eijm the quantities Efjm that give 
the dependence of the stress tensor components on 
the ci: 

(11) 

The application of these formulas to various 
systems ( antiferroelectrics, ferromagnetic sub-
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stances, antiferromagnetics, quartz near the point 
of the a - {3 transition, and so on) and the deter­
mination of the connections between the Ci and 
the macroscopic parameters of the crystal require 
special considerations involving the concrete 
changes of symmetry in the various transitions. 
A qualitative picture of the dependence of the in­
tensity of the scattering on the temperature and on 
q can, however~ be obtained from the general for­
mulas given here. As is well known,5 the deriva­
tives 82cp/8ci8cj go to zero at a phase transition 
point of the second kind. Because of this an anom­
alously large scattering should be observed near 
the temperature T0• As in the case of ferroelec­
tric crystals considered above, the type of depend­
ence of IF on T and q depends essentially on 
whether or not there is a term of degree zero in 
the expansion of Eijm in powers of the ci. De­
pending on this, one gets a qualitative picture of 
the intensity distribution of the scattering which 
is of some one of the types discussed above. In 
particular, in the neighborhoods of those regular 
reflections at which d£i ;:: 0 (in the case of x-ray 
scattering by ferromagnetic and antiferromagnetic 
crystals d£i ;:: 0 for all reflections ) , there must 
be characteristic peculiarities of IF near the 
temperature T0 in crystals for which EiJm >"' 0, 
and also in those for which Ei~m;:: 0 but at the 
transition point there is a large change of the ther­
mal expansion coefficient (neighborhood of the 
critical point). In the neighborhoods of reflections 

for which d£i >"' 0 the expressions for IF always 
contain large terms not proportional to q - 2• In 
particular, characteristic peculiarities in the in­
tensity distribution of the diffuse scattering should 
be found in quartz near the point of the a - {3 tran­
sition. 

In conclusion we remark that near a phase tran­
sition point of the second kind there should also be 
characteristic peculiarities in the intensity distri­
bution of the diffuse scattering by the thermal vi­
brations. This problem will be dealt with else­
where. 
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