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The free energy and the distribution functions (binary and ternary) of a system of charged 
particles are calculated with effects of short-range forces included. Expressions for these 
quantities are written in terms of series of group integrals (correlations). It is shown that 
for an electron plasma in a compensating field the Coulomb potential does not give diverg
ences in the expressions for the free energy and the distribution functions. The total free 
energy of a system of particles with a Coulomb interaction potential is also calculated. The 
"transition function" for such systems is constructed. 

1. STATEMENT OF THE PROBLEM 

UNTIL recently the determination of the thermo
dyanamic characteristics of ionic systems has 
been carried out by the use of partial distribution 
functions - single -particle and binary functions. 
The calculations involved cumbersome computa
tions and the solution of complicated systems of 

integro-differential equations. In these calcula
tions for systems of charged particles short-range 
forces could be taken into account only with special 
forms of force law; for example, with the choice of 
the mutual potential in the form 1 

<P = (e2 / r) [1- A (r) e-~r]. 
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The construction of the exact binary function of 
a system by the method of the Bogoliubov equations, 
independent of the actual form of the short-range 
part of the total interaction potential, remained an 
unsolved problem. 

Since 1949 there have been appearing papers by 
Bogoliubov, Zubarev, Bohm, Gross, Pines and 
others in which a new and original method of col
lective variables is presented, which makes it pos
sible to find at once the partition functions of sys
tems of interacting particles. In this method the 
behavior of the system is described from the point 
of view of the collective vibrations that occur owing 
to the interaction and motion of the particles. For 
the appearance of vibrations that include whole 
groups of particles it is naturally necessary that 
the sphere of effective action of the field of one 
particle must extend to many other particles. 
Langmuir and Tonks have shown2 that the wave
length of the oscillations in an ionic system is not 
smaller than the Debye radius rd, which is of the 
order c-112 x 10-8 em, where c is the concen
tration in moles per liter. On the other hand, rd 
can be regarded as the radius of the sphere of ef
fective action of the Coulomb forces. 

From this it follows that for systems with a 
Coulomb interaction potential the coordinate space 
can be replaced by a space of collective variables 
Pk• each of which describes a certain monochro
matic vibration in the system, with the wave vec
tor k. 

The van der Waals forces and 'the repulsive 
forces act at distances considerably smaller than 
rd. The action of these forces does not give rise 
to collective vibrations, and consequently, they 
cannot be described in the space of the Pk. 

Bogoliubov has suggested the study of the 
"mixed" problem: the calculation of the integral 
over states (partition function) of an ionic system, 
in which the short-range forces are described in 
the coordinate space and the long-range forces are 
described by means of collective variables. The 
present paper is devoted to the solution of this 
problem. 

Let us consider a system in equilibrium, which 
is neutral as a whole and consists of M kin?s of 
ions, containing Na particles of type a. The in
teraction is described by the "exact" potential3 

(1.0) 

Let us calculate the free energy of this system 

(1.1) 

where Zid is the ideal part of the statistical in
tegral ( omitted in what follows ) . 

We introduce the collective variable 
Jll 

fit< = ~ AaN-'iz ~ eikr; 

a=l I-<.i<Na 

which is the Fourier transform of the function 

f (r) = L 'AaN-'1' o (r- r;), 
i,a 

Aa = ea ( ~ e~nc ( 1' ' 11c = N c IN' k =F 0. 

and by its use we write the configuration integral 
in the form4 

z = exp (+~ex (k)) ~ exp (- + fcx(k) (!kP-ky b) (d['k), 

ex (k) = ~ e~ncv (k) / vi:<J, v = ~ , (1.2) 

where v (k) is the Fourier transform of the Cou
lomb potential. J ( Pk) is the "transition function"4 

providing for the transition from Eq. (1.2) to the 
usual form 

Z = ~ exp {- U(rl, ... , rx) / 1-J} dq1 ... dq,v. (1.3) 

From PJtP -k = ~2 + 1{2 it follows that the poten

tial energy of the Coulomb interaction of the ions 
is replaced by the potential energy of a system of 
harmonic oscillators, over whose amplitudes the 
integration is to be taken. The sum over k has 
an upper limit at some value kmax depending on 
the concentration, which corresponds to the ex
istence of a value A.min. 

We do not expand the short-range potentials in 
Fourier series. They remain in the coordinate 
representation and can enter, for example, into the 
make-up of the transition function J (Pit), which 
is given by 

J (f'k) = ~ exp {- 2!, ~. ?ab (rii)} 
a,b,t,J 

X n 0 ( [J~ - L t,aN-'1' cos kr;) (1.4) 
/(</=O a,t 

X o ( ['~- ~ 'AaN-' 1' sin kr;) dq 1 . .. dqN, 
a,i 

where 

Taking cpab ( r) = 0, we get the transition func
tion for the Coulomb potential. Since this case is 
of great importance for the further work, we shall 
examine it in more detail. 
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2. THE CONFIGURATION INTEGRAL IN THE 
CASE OF THE COULOMB INTERACTION 
POTENTIAL 

As in Ref. 4, we substitute into Eq. (1.4) the in
tegral representation of the 6 function 

M N 0 

' ( N-'r, ~ , "' ikri '1 
f; Pk - .LJ Aa .LJ e .I 

" { ( )a;I i~l ) } 
• - 1 /z ikr· = ~exp t'iC Pk- ~'AaN e ' w"'. dwk. 

On integrating over the coordinates and over 
wk we get the transition function in an operator 
form that is convenient for calculation: 

k N { "' . } { ~ ( 1 A~ J (pk) =V exp ;;3(- i)'Di I-7Na 2.3! N• 

.. ·) 
(2.1) 

-~NaNb .. -}exp{- ~ ~(PkP-~<+lnr.)}. 
a,b 

where the operators are defined by 

M 

Dn = ~ naD~. 
a=l 

In the sum k1 + k2 + ..• + kn = 0 no sum of order 
less than n is equal to zero. 

We confine ourselves to calculations carried 
out with only the first two terms in the braces of 
Eq.(2.1). 

We shall show that the first term 

J~=VNexp{~3 (l)iDi}exp{- ~ ~(PkP-k+ln'T()}. 
(2 .2) 

gives the main part of the transition function, and 
the second 

J~=-VNexp{~ (-l)iDi}"'Na(-1- A~ 
.LJ .LJ 2-3! N• 
t>-3 a 

(2.3) 

xexp{- ~ ~(-l)iDf}exp{- ~~ (PkP-d--ln,.)} 
<>2 k 

(and subsequent terms) lead to quantities propor
tional to 1/V, which can be neglected. For this 
purpose we substitute Eq. (2.1) into (1.2) and ex-

pand the exponentials of operators in series. 
Under the integral sign there remains the expo
nential function 

which is an even function of Pk· Therefore on in
tegration over the collective variables the expres
sions different from zero will be those in which 
the differentiation is an "even" one of the type 

02n I opk,DP-k, ... opknOP-kn . 

Let us consider first the main contribution to 
the statistical integral, in which on~ takes for the 
transition function the expression (2.2): 

Z~ = exp (+~a (k)) ~ exp (- ~ ~a (k) PkP-k) J~ (pk) (a~k)· 
k k ~.~ 

The expansions in J~(Pk) can be written out in 
the form 

(I - D3 + D4- D5 + · · · + D3D3 - D3D, + · · · 
+ D4D4- D4Ds + · · · - D3D3D3 

+ DaDaD4- · · ·) exp (-+ ~ (PkP-k +In")). (2.5) 
k 

According to the definition of the Pk• all k 
t- 0; moreover, in the sums k1 + k2 + ... + kn = 0 
there is nowhere a ki equal to - kj; therefore 
the linear terms in E q. (2. 5) ( except for the 1) 
can be dropped, since they give zero when one car
ries out the integration in Eq. (2.4). The same is 
true of many of the products of the Di by twos, 
threes, and so on. 

In the sum in Eq. (2.5) we must consider the 
terms containing even derivatives. The factors 
PkP-k obtained after the differentiations in the 
expression (2.4) for J~ can conveniently be re
placed by operators {1 + a;aa (k)], which can 
be taken outside the sign of integration over Pk· 

Expanding, finally, the combination of operators 
[ 1 + a ;a a ( k) ], we get as the result of the inverse 
Fourier transformation the main contribution to 
the configuration integral in the following form: 

z~< -- ll' e~(k) { -l!'!__ ~ nanb \' ( -g g~b ) N• " nanbnc r ( -"ac ) 
o - k a (k) + 1 I + N V f.b 2! ) e ab- I +gab- -2- dq + \72 a~ c-3!- ~ e - I + gac 

X (e-gcb - I + gcb )3gab dq1dq2 + ~ (e-gab- I+ gab) (e--gac- I + gac) (e-'<cb- 1 +gcb) dqrdq2 
(2.6) 
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where 8gab ( r) is the self-consistent De bye po
tential* 

gab (r) = (eaeb f s8)e-xr j r for the Coulomb potential 

(2. 7a) 

e e 
for the potential ___::__~!___ ( 1 - e-cx'), 

€f 

p= -}1X(V1 +2~x+V~), 

q = +IX (lfl + 2~x- Y1- 2~x), 

(2. 7b) 

For a system of ions of different signs inter
acting according to the Coulomb law the integral 

J e -gab(r)dq diverges at zero.t Therefore in the 

case of a system of ions of different signs we shall 
use a cut off Coulomb potential and substitute the 
expression (2. 7b) for gab· 

In order to get the terms in Eq. (2.6) propor
tional to ( N/V) 3 it is necessary to examine prod
ucts of four operators in Eq. (2.5). For example, 
the calculation of the operator D3D3D3D3 leads to 
three integrais 

The first two are the beginning of a series of com
plicated correlation expressions. The last is the 
third term of the series expansion of the expres
sion 

exp ( N ~ ~ ;, g~b dq) . 

Developing the higher products of operators in 
Eq. (2 .-5) we get on one hand, new correlation 
terms proportional to N, and on the other hand, 
powers of these terms, corresponding to the ex
pans ion of the exponential. 

Thus the whole expression for the main part of 
the statistical integral in an exponential function 
of the terms proportional to the first power of N. 
On th~ other hand, the free energy is the logarithm 

*After the inverse Fourier transformation one puts 

~(gab-+~ gabdqy dqz~g~bdq,i;d. 

t For oppositely charged particles gab(r) < 0. 

of the statistical integral. The additivity proper
ties require that 

F = -kT lnZ = Nf(T, VI N). 

Therefore in the expansion for ln Z we must con
fine ourselves to terms proportional to the first 
power of N. This combination corresponds to the 
logarithm of the whole expression for the statis
ticalintegral(cf. also Ref. 5, p. 239). 

In calculating the expression (2.6) we were ex
amining only the main part of the statistical inte
gral. We shall now show that in the calculation of 
F the operator Jf leads to infinitely small quan
tities of the order 1/V which can be neglected. 

To do this we substitute Jf into Eq. (2.4) in
stead of J~ and calculate the integral 

Z~ = exp ( { ~IX (k)) ~ exp (--} ~IX (k) PkP-k) Ji (pk) (dpk)· 
k k 

(2.8) 

Comparing Eqs. (2.2) and (2.3), we find it useful to 
write Jf in the form 

J~ = - ~ N a exp {- D~ / N} ( 1 + D~ / N - D~ / N + · · ·) 
a 

( 1 A~ "' ) h. ) X --1 - 3 .LJ 86 / 8pk, · · · 8p-k, + · · · Jo . (2.3a 
2·3. N k,+k2+k,-o 

After Eq. (2.3a) is substituted into Eq. (2.8), the 
further calculations are analogous to Eqs. (2.4)
(2 .6) and lead to the following result: 

Zk __ zk "'~ e-gaa(O) 
1 - 0 Li 2 

a 

X ~ ~ ( e-gaa(r)- 1 + gaa (r) - g;a ) dq (2.9) 

x [ 1 + 3~ z1~ ~ nb ~ g~b dq + · · · ] = - z~ -f- rp ( ~ ) , 

where cp ( N/V) is a finite function of the concen
tration. 

The general expression for the statistical inte
gral of a system of charged particles (without in
clusion of short-range forces) is 

zk = z~ + z~ = z~ (1 + Nrp /V). (2.10) 

3. THE FREE ENERGY OF A COULOMB 
SYSTEM 

In the formula 

pk = - kT In Z1' (3.1) 

we substitute Z~ from Eq. (2 .6) and expand the 
logarithms in powers of N. Taking into account 
the considerations presented above, we confine 
ourselves to expressions proportional to the first 
power of N. Then 
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F =- NkT {In V + + ~~ (0( (k) -In (0( (k) + 1)] + 1~ ~ n~nb ~ (e-"ab ~ 1 +gab __ + g~b) dq 
k a,b 

(3.2) 

--l- N_" "ii.' ... ~__!__ ""~e-<raa(O) !!__ ( (e-<raa<r) _ 1 + () 1 2 ( J)d [l N 1 "" \ 3 d ]} 
, \l"a.f."c.d v 72 v j\ gaa r -Tgaa r q + 3!V z~fnb~gab q+ ... ' 

where 

"" 2 \ k "k 0( (k) = LJ (ecncN jVIFJ) v (k), 'I (k) = j <I> (r) e' r dq = 471:0(2 j k2 (0(2 + k2), 

The last terms of Eq. (3.2) are smaller than the other terms by a factor 1/V and can be neglected.* 
Thus it is established that for the calculation of the free energy of a system of charged particles the 

transition function is given, apart from terms proportional to 1/V, by the expression 

Jk = J~ = exp ( L: (~ 1)1D;) exp ( ~-} ~PkP-k +In 1t)). 
·~ k 

(3.3) 

Terms whose application would result in infinitely small quantities of the order e-gaa(o) /V have been 
dropped. 

We now proceed to substitute into Eq. (3.2) the value of 01 (k) and to sum over k. 
The free energy of a neutral system of ions with (cut off) Coulomb interaction potential is given by 

the foliowing final formula: 

F --NkT{! V+-1-~(~-__!__ 1-(J-r<)V-1 2B )\+..!!...."" nanb\'(-"ab<r)-1 -~ 2 )d - n 4n~ N 2 3?' [ l'x + 'x] J V LJ -2-j e +gab 2 gab q 
a, b 

+ ~(e-gab_l+gab)(e-gac_J + gac)(e-'Jcb_l +gcb)dqldq2} + ~: · · ·. (3.4) 

For small concentrations this goes over into the relation 

[ 1 v { x2 1 ( v- \}] F = - NkT In V + 4n~ N 2 - 3,12 I - (I - ~x) I + 2~x ) , (3.5) 

which can be obtained by means of the zeroth approximation to the binary distribution function. t 
It is now easy to go on to treat the problem of constructing the distribution functions and the thermo

dynamic functions for the case in which one includes in the interaction energy all the central forces, of 
both long and short ranges. One can' also deal with a system of ions in external fields. For the case of 
an external field potential that possesses a Fourier transform the transition function remains the same 
as in the absence of the field, and is given by Eq. (3.3). 

4. THE DISTRIBUTION FUNCTIONS AND FREE ENERGY OF A SYSTEM OF CHARGED PARTICLES 
WITH INCLUSION OF EFFECTS OF SHORT-RANGE FORCES 

By using the results of Sees. 2 and 3 one can carry out the study of systems of charged particles with 
the exact interaction law of Eq. (1.0) in two ways, which lead to identical results. 

In the first place, one can replace the configuration integral of the system, 

Z = ~ exp {- S . {- ( <l>~b (rii) + <?ab (riill} dq1 . .. dqN, 
a,b, l, 1 

*In the case of the Coulomb potential ct>k(r) ~ 1/r, g88(0) = ""• and these terms are simply equal to zero. 
tin the limit {3 ... 0 Eq. (3.5) goes over into Debye's result, which Zubarev4 has obtained by the method of 

collective variables. 

(4.1) 
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where 

;nk (r ) e e , cr 'f)' ab (r,·,·) = Aab I r6,·,· 4-- babe -r ijl p, r,·,· = I r,· - r,· ,1 , '>'ab ij = a b I' ij, ' 

by the expression (1.2), in which the Coulomb energy is represented by the energy of the harmonic vibra
tions, and the short-range part of the force law (1.0) affects the structure of the transition function, given 
by 

+ ~ Na3~~~c ~ [3fabfbc + fadbcfca] [1 + ~ exp {~ (- J)iiJfbc IN}~ apk~:-k (AaAbeikr, + AaAceikr, (4.2) 
a,b, c . i>2 k 

+ AbAceik(r,-r,)) + · · ·] dq1 dq2 + ~ . · · ·} Jk (pk), 
abed 

Here 

fab = e-~able_l, IJfo = ~ 
k,+ .. ·+ki~-o 

A~ +:A~ 
i! N(i-2)12 

and in the sum k1 + ..• + ki no sum of order less than i is equal to zero. Jk is the transition function 
for the Coulomb potential, given by Eq. (3 .3). After Eq. (4.2) has been substituted into Eq. (1.2) the fur
ther developments are analogous to the treatment for the Coulomb problem. Here one again has to group 
the operators Di and to sum complicated series. 

This procedure is perhaps the more cumbersome. In this paper the calculation will be carried out by 
the second method, in which one uses the properties of the free energy as a generating functional. 

Let us introduce a functional of the 1/Jab ( rij), which are an arbitrary system of regular rapidly de
creasing radially symmetrical functions: 

The integrand can be transformed into a sum by the substitution 

f~b(fij) = exp {- [9ab(r;i) + ~ab(f;j)] 18} -I. 

The result is the following way of writing the generating functional L ( 1/J): 

(4.3a) 

(4.3b) 

Carrying out the integration, we use the sequence of Bogoliubov distribution functions of Coulomb systems 

(4.4) 

Then we get from Eqs. (4.3) 

L (~) =-8 In Zh- 8 In { 1 + ~2 ~ ~ f~b (r;i) F~b (r;i) dqidqi + ~3- ~ ~ (f~b (r;i) f~c (rik) -r f abfbcfca) 

X F~bc (ri, 'i• rk) dq; dqidqk + ~ · · ·}, 
a,b, c,d 

(4.5) 

where zk is the statistical integral of the Coulomb system and F~b ( r 12 ) and F~bc are the binary and 
ternary distribution functions of the Coulomb system.4 The expression (4.5) is the starting point for the 
solution of the stated problem. 

Let us begin with the distribution functions. By the definition of functional differentiation the binary 
function is given by 

or by Eq. (4.5): 
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The triple functional derivative leads us to the ternary distribution function 

Substituting into Eqs. (4.6) and (4.7) the values of F~b and F~bc from Ref. 1, 

F~b (r12) = e-gab(r,) {I + ~ ~ nc ~ [(e-gae- I) (e-gcb- I)-- gaegcb] dqc 
II 

+ ~: ~ nend ~ (e-gac -1) (e-gcd -I + ged) X (e-gdb_ I)dqedqd + ~: ~ · · ·}; 
cd cde 

X 

and collecting the terms with equal powers of N/V we get the binary function 

Fab=exP[-}('Pab+gab)]{l+ ~ ~nc[~f(e-gac_J)(e-gcb_l) 
c 

-gacgcb]dqc+~<fac+fbc+faefbc)e-(gac+gbc) dqc]+~: ~ ··l 
c, d 
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(4.6) 

(4. 7) 

(4.8) 

(4.9) 

(4.10) 

The first term in the expression (4.10) is the product of the Boltzmann and Debye probabilities for the 
distribution of two particles. The subsequent terms involve group integrals of Coulomb and mixed types. 

In order to get the free energy of the system, we set 1f! = 0 in Eq. (4.5). Then 

F pk 8 ~ NaNb \f pk ( )d 8 ~ NaNbNc \ f f f k 
= - " ~ 2V ~ ab ab r q- ~ ~ ~ (3f abf be + ab be ca) F abcdql dq2 + · · · , 

a, b a, b, c 
(4.11) 

where Fk = - e In zk is the free energy of the Coulomb system, given by Eq. (3 .4). 
Substituting Eqs. (4.8), (4.9), and (3.4) into Eq. (1.11), we find finally 

F=-1-l(lnV +- ~ 4!~ (~2 - 3~ 2 (1-(1-~x)Vl +2~x)) + 2~ ~ nanb[~fabe-gabdq 
a,b 

-l- ~ (e-gab- I +gab--+ g~b) dq l + ::2 ~ nanbnc [ ~ f abe-gab {(e-gac- I) (e-geb- I) - gacgcb} dq1 dq2 
fl, b, c 

- f gab (e-t?cb- I + gcb) (e--gac- I + gac) dqldq2] + ~: · · · ) (4.12) 

In Eqs. (4.10) and (4.12) expressions for the bi- sponding to pure Coulomb (or "cut off" Coulomb) 
nary function and the free energy of a neutral sys- interaction are made up of exponential functions of 
tern of ions are written in the form of series of the type e -gab _ 1, where gab~ e -rablrd is 
group integrals. The first terms of these series the self-consistent Debye potential. Thus the lute-
correspond to the self-consistent (De bye) interac- grands go to zero very rapidly with increasing r. 
tion between the ions. The second terms, arising Furthermore, the group integrals decrease rapidly 
from combinations of pairs of operators Df, char- with increase of the order of the correlation. 
acterize the ·binary correlation between the parti-
cles. After these come triple, quadruple, and still 
higher correlations. 

Each group correlation consists of integrals of 
Coulomb and mixed types. The integrals corre-

The mixed group correlations involve the 
usual functions of the van der Waals theory, 

exp (- 'Pab/8) - 1, and functions e:-gab - 1. 
Such group integrals also decrease rapidly with 
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increasing order of correlation. 
The expressions for the free energy and the 

distribution functions also have the form of power 
series in N/V. These are not, however, expan
sions in powers of the concentration. In the first 
place, such expansions lose their meaning when 
N/V > 1; in the second place, the group integrals 
depend on N /V. 

The expressions for the binary distribution 
function and the free energy are series expres
sions in the correlations. Because the Coulomb 
forces occur in the integrals in the form of the 
screened self-consistent potential, for which the 
screening radius (rd) decreases with increas
ing concnetration, these expansions are obviously 
valid for high concentrations. 

Let us consider further a special case of Eqs. 
(4.6) and (4.12)- a system of electrons in a com
pensating external field, for which f <l>kdq = v ( 0) 
= 0. Since in this case fab ( 0) = 0, the quantities 
F ab = F~b and F = yk are given by Eqs. (4.8) 
and (3.4), respectively. The binary and ternary 
distribution functions do not diverge at zero, and 
the integrands in the correlation terms of Eqs. 
(4.8), (4.9), and (3.4) are also free from singular
ities. This indicates that for electrons in a com
pensating field there is no need to "cut off" the 
Coulomb potential. 

In a subsequent paper the thermodynamic func
tions of ionic systems will be calculated and com
pared with experiment. 

In conclusion I express my sincere gratitude to 
N. N. Bogoliubov for suggesting this problem and 
to A. E. Glauberman for a discussion of the paper. 

Note (September 3, 1957). The remark in the 
recently published paper of Bazarov6 about the in
correctness of the formula (2.4) for the free en
ergy in the paper of Glauberman and Iukhnovskii7 

is without foundation. The divergence of F and 
the departure from the Debye formula for (3 - 0 
are avoided by the choice of the arbitrary constant 
of integration (to the accuracy with which F is 
defined), after which Eq. (2 .4) takes the form 

F = -- "'VN e - -(x-1)"--(x-1)" T 2 {1[1 2 
e 2e L.J a a 2ac• 5 3 

a 

+ (x-1) + ~ (x-2)5 - {- (x- 2)•x- &J}· 
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